Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 9(4)2019 Mar 27.
Article in English | MEDLINE | ID: mdl-30934661

ABSTRACT

Functionalized graphene was efficiently prepared through ball-milling of graphite in the presence of dry ice. In this way, oxygen functional groups were introduced into material. The material was further chemically functionalized to produce graphene derivative with phosphonic groups. The obtained materials were characterized by spectroscopic and microscopic methods, along with thermogravimetric analysis. The newly developed material was used as an efficient mercury adsorbent, showing high adsorption efficiency. The adsorption isotherms were fitted using Freundlich and Langmuir models. The adsorption kinetics were fitted with pseudo-first order and pseudo-second order models. Adsorption selectivity was determined in the presence of cadmium ions and nickel ions. The presence of mentioned bivalent ions in the solution did not affect mercury adsorption efficiency.

2.
J Nanopart Res ; 20(5): 143, 2018.
Article in English | MEDLINE | ID: mdl-29780275

ABSTRACT

The synthesis, characterization, and the influence of single-walled carbon nanotubes (SWCNTs) modified with an anticancer drug doxorubicin (DOx) on the properties of model biological membrane as well as the comparison of the two modes of modification has been presented. The drug was covalently attached to the nanotubes either preferentially on the sides or at the ends of the nanotubes by the formation of hydrazone bond. The efficiency of the modification was proved by the results of FTIR, Raman, and thermogravimetric analysis. In order to characterize the influence of SWCNT-DOx conjugates on model biological membranes, Langmuir technique has been employed. The mixed monolayers composed of 1,2-dipalmitoyl-sn-glycero-3-phosphothioethanol (DPPTE) and SWCNT-DOx with different weight ratio have been prepared. It has been shown that changes in the isotherm characteristics depend on the SWCNTs content. While smaller amounts of SWCNTs do not exert significant differences, the introduction of the prevailing content of the nanotubes increases area per molecule and decreases the maximum value of compression modulus, leading to more fluid monolayer. However, upon increasing the surface pressure, the aggregation of carbon nanotubes within the thiolipid matrix has been observed. Mixed layers of DPPTE/SWCNT-DOx were also transferred onto gold electrodes by means of LB method. Cyclic voltammetry showed that SWCNT-DOx conjugates remain adsorbed at the electrode surface and are stable in time. Additionally, higher values of peak current and DOx surface concentration obtained for side modification prove that side modification allows for more efficient conjugation of the drug to carbon nanotubes. Graphical abstractᅟ.

3.
Beilstein J Nanotechnol ; 8: 1094-1103, 2017.
Article in English | MEDLINE | ID: mdl-28685110

ABSTRACT

Graphene oxide was functionalized with simultaneous reduction to produce phosphonated reduced graphene oxide in a novel, fully scalable, one-pot method. The phosphonic derivative of graphene was obtained through the reaction of graphene oxide with phosphorus trichloride in water. The newly synthesized reduced graphene oxide derivative was fully characterized by using spectroscopic methods along with thermal analysis. The morphology of the samples was examined by electron microscopy. The electrical studies revealed that the functionalized graphene derivative behaves in a way similar to chemically or thermally reduced graphene oxide, with an activation energy of 0.014 eV.

4.
Bioconjug Chem ; 28(7): 1834-1841, 2017 07 19.
Article in English | MEDLINE | ID: mdl-28482148

ABSTRACT

The use of phage display to identify peptides with an ability to bind and synthesize Eu2O3 nanoparticles is demonstrated in this report. This is the first report of modified phages specifically binding a lanthanide. The peptides exposed on virions revealed very strong binding to Eu2O3 nanoparticles and the ability to catalyze Eu2O3 nanoparticles' formation from Eu(OH)3 and Eu(NO3)3 solutions. The luminescence emission spectrum of Eu3+ ions indicated that these ions existed mostly in sites deviated from the inversion symmetry in crystalline Eu2O3 aggregates and gelatinous Eu(OH)3 precipitate. The ability of phage-displayed peptides to catalyze formation of Eu2O3 nanoparticles provides a useful tool for a low-cost and effective synthesis of lanthanide nanoparticles, which serve as attractive biomedical sensors or fluorescent labels, among their other applications.


Subject(s)
Bacteriophages/metabolism , Europium/chemistry , Nanoparticles/chemistry , Peptide Library , Catalysis , Europium/metabolism , Hydroxides , Nanoparticles/metabolism , Nitrates , Peptides , Virion/chemistry
5.
Bioconjug Chem ; 27(9): 1999-2006, 2016 09 21.
Article in English | MEDLINE | ID: mdl-27479604

ABSTRACT

Biological systems, especially bacteriophages and peptides, are an attractive green alternative to other known methods of nanoparticle synthesis. In this work, for the first time, bacteriophages were employed to synthesize a specific peptide, capable of producing nanoparticles (NPs). Derivatives of M13 bacteriophage exposing a ZnO-binding peptide (TMGANLGLKWPV) on either pIII or pVIII phage coat protein were constructed and used as a biotemplate. The exposition of the ZnO-binding peptide, synthesized by phages during their propagation in bacteria, on M13 virions provided a groundwork for growing ZnO nanostructures. Depending on the recombinant phage type used (M13-pIII-ZnO or M13-pVIII-ZnO), well separated ZnO NPs or complex 3D structures of ZnO NPs of ca. 20-40 nm were synthesized at room temperature. The synthesized ZnO nanoparticles served as a luminescent material that emitted light near the short wavelength end of the visible region (at ca. 400 nm). The next very low intensity emission band at 530 nm demonstrated that the ZnO material obtained is characterized by a low concentration of surface defects.


Subject(s)
Bacteriophage M13/metabolism , Luminescent Agents/chemistry , Luminescent Agents/metabolism , Nanoparticles , Zinc Oxide/chemistry , Zinc Oxide/metabolism , Amino Acid Sequence , Peptides/chemistry , Peptides/metabolism , Virion/metabolism
6.
Bioelectrochemistry ; 87: 154-63, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22078125

ABSTRACT

Single-walled carbon nanotubes (SWCNT) were covalently modified with anthracene and anthraquinone and used for the construction of cathodes for biocatalytic reduction of dioxygen. The nanotubes with aromatic groups casted onto the electrode increased the working surface of the electrode and enabled efficient direct electron transfer (DET) between the enzyme and the electrode. The aryl groups enter the hydrophobic pocket of the T1 center of laccase responsible for exchanging electrons with the substrate. Glassy carbon electrode covered with arylated SWCNT and coated with a layer of neutralized Nafion containing laccase was found to be a very efficient cathode in the hybrid battery. Zn wire covered with a Nafion film served as the anode. The cell parameters were determined: power density was 2 mW/cm(2) and the open circuit potential was 1.5 V.


Subject(s)
Anthracenes/chemistry , Anthraquinones/chemistry , Electrons , Fungal Proteins/chemistry , Laccase/chemistry , Nanotubes, Carbon/chemistry , Oxygen/chemistry , Biocatalysis , Bioelectric Energy Sources , Electricity , Electrodes , Electron Transport , Equipment Design , Spectrum Analysis, Raman , Zinc/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...