Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Exp Immunol ; 214(2): 209-218, 2023 12 12.
Article in English | MEDLINE | ID: mdl-37549240

ABSTRACT

Peritonitis and the resulting peritoneal injuries are common problems that prevent long-term peritoneal dialysis (PD) therapy in patients with end-stage kidney diseases. Previously, we have analyzed the relationship between the complement system and progression of peritoneal injuries associated with PD, particularly focusing on the early activation pathways and effects of the anaphylatoxins. We here utilized a novel mAb 2H2 that blocks assembly of the membrane attack complex (MAC) to investigate roles of the complement terminal pathway in PD-associated peritoneal injury. We intraperitoneally injected mAb 2H2 anti-C5b-7 (2.5 or 5 mg/rat) once or twice over the five-day course of the experiment to investigate the effects of inhibiting formation of MAC in a fungal rat peritonitis model caused by repeated intraperitoneal administration of zymosan after methylglyoxal pretreatment (Zy/MGO model). Rats were sacrificed on day 5 and macroscopic changes in both parietal and visceral peritoneum evaluated. Peritoneal thickness, the abundance of fibrinogen and complement C3 and MAC deposition in tissue and accumulation of inflammatory cells were pathologically assessed. The results showed that mAb 2H2, but not isotype control mAb, reduced peritoneal thickness and accumulation of inflammatory cells in a dose and frequency-dependent manner in the Zy/MGO model. These effects were accompanied by decreased C3, MAC, and fibrinogen deposition in peritoneum. In conclusion, in the rat Zy/MGO model, complement terminal pathway activation and MAC formation substantially contributed to development of peritoneal injuries, suggesting that MAC-targeted therapies might be effective in preventing development of peritoneal injuries in humans.


Subject(s)
Peritoneum , Peritonitis , Humans , Rats , Animals , Peritoneum/injuries , Peritoneum/metabolism , Magnesium Oxide/metabolism , Magnesium Oxide/pharmacology , Rats, Sprague-Dawley , Peritonitis/drug therapy , Complement Activation , Complement Membrane Attack Complex/metabolism , Fibrinogen/metabolism
2.
Mult Scler ; 26(14): 1929-1937, 2020 12.
Article in English | MEDLINE | ID: mdl-31701790

ABSTRACT

BACKGROUND: Multiple sclerosis (MS) can be difficult to differentiate from other demyelinating diseases, notably neuromyelitis optica spectrum disorder (NMOSD). We previously showed that NMOSD is distinguished from MS by plasma complement biomarkers. OBJECTIVE: Here, we measure cerebrospinal fluid (CSF) complement proteins in MS, NMOSD and clinically isolated syndrome (CIS), a neurological episode that may presage MS, to test whether these distinguish NMOSD from MS and CIS. MATERIALS AND METHODS: CSF (53 MS, 17 CIS, 11 NMOSD, 35 controls) was obtained; complement proteins (C4, C3, C5, C9, C1, C1q, Factor B (FB)), regulators (Factor I (FI), Factor H (FH), FH-Related Proteins 1, 2 and 5 (FHR125), C1 Inhibitor (C1INH), Properdin) and activation products (terminal complement complex (TCC), iC3b) were quantified by ELISA and results expressed relative to CSF total protein (µg/mg). RESULTS: Compared to control CSF, (1) levels of C4, C1INH and Properdin were elevated in MS; (2) TCC, iC3b, FI and FHR125 were increased in CIS; and (3) all complement biomarkers except TCC, FHR125, Properdin and C5 were higher in NMOSD CSF. A statistical model comprising six analytes (C3, C9, FB, C1q, FI, Properdin) plus age/gender optimally differentiated MS from NMOSD.


Subject(s)
Multiple Sclerosis , Neuromyelitis Optica , Biomarkers , Complement Membrane Attack Complex , Complement System Proteins , Humans , Multiple Sclerosis/diagnosis
SELECTION OF CITATIONS
SEARCH DETAIL
...