Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Ultramicroscopy ; 246: 113685, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36682323

ABSTRACT

Accurately measuring the size, morphology, and structure of nanoparticles is very important, because they are strongly dependent on their properties for many applications. In this paper, we present a deep-learning based method for nanoparticle measurement and classification trained from a small data set of scanning transmission electron microscopy images including overlapping nanoparticles. Our approach is comprised of two stages: localization, i.e., detection of nanoparticles, and classification, i.e., categorization of their ultrastructure. For each stage, we optimize the segmentation and classification by analysis of the different state-of-the-art neural networks. We show how the generation of synthetic images, either using image processing or using various image generation neural networks, can be used to improve the results in both stages. Finally, the application of the algorithm to bimetallic nanoparticles demonstrates the automated data collection of size distributions including classification of complex ultrastructures. The developed method can be easily transferred to other material systems and nanoparticle structures.

2.
Sensors (Basel) ; 22(14)2022 Jul 11.
Article in English | MEDLINE | ID: mdl-35890870

ABSTRACT

Injurious pecking against conspecifics is a serious problem in turkey husbandry. Bloody injuries act as a trigger mechanism to induce further pecking, and timely detection and intervention can prevent massive animal welfare impairments and costly losses. Thus, the overarching aim is to develop a camera-based system to monitor the flock and detect injuries using neural networks. In a preliminary study, images of turkeys were annotated by labelling potential injuries. These were used to train a network for injury detection. Here, we applied a keypoint detection model to provide more information on animal position and indicate injury location. Therefore, seven turkey keypoints were defined, and 244 images (showing 7660 birds) were manually annotated. Two state-of-the-art approaches for pose estimation were adjusted, and their results were compared. Subsequently, a better keypoint detection model (HRNet-W48) was combined with the segmentation model for injury detection. For example, individual injuries were classified using "near tail" or "near head" labels. Summarizing, the keypoint detection showed good results and could clearly differentiate between individual animals even in crowded situations.


Subject(s)
Animal Welfare , Turkeys , Animals , Neural Networks, Computer
3.
Animals (Basel) ; 11(9)2021 Sep 09.
Article in English | MEDLINE | ID: mdl-34573621

ABSTRACT

This study aimed to develop a camera-based system using artificial intelligence for automated detection of pecking injuries in turkeys. Videos were recorded and split into individual images for further processing. Using specifically developed software, the injuries visible on these images were marked by humans, and a neural network was trained with these annotations. Due to unacceptable agreement between the annotations of humans and the network, several work steps were initiated to improve the training data. First, a costly work step was used to create high-quality annotations (HQA) for which multiple observers evaluated already annotated injuries. Therefore, each labeled detection had to be validated by three observers before it was saved as "finished", and for each image, all detections had to be verified three times. Then, a network was trained with these HQA to assist observers in annotating more data. Finally, the benefit of the work step generating HQA was tested, and it was shown that the value of the agreement between the annotations of humans and the network could be doubled. Although the system is not yet capable of ensuring adequate detection of pecking injuries, the study demonstrated the importance of such validation steps in order to obtain good training data.

4.
Opt Express ; 25(16): 18797-18816, 2017 Aug 07.
Article in English | MEDLINE | ID: mdl-29041073

ABSTRACT

Coherent imaging has a wide range of applications in, for example, microscopy, astronomy, and radar imaging. Particularly interesting is the field of microscopy, where the optical quality of the lens is the main limiting factor. In this article, novel algorithms for the restoration of blurred images in a system with known optical aberrations are presented. Physically motivated by the scalar diffraction theory, the new algorithms are based on Haugazeau POCS and FISTA, and are faster and more robust than methods presented earlier. With the new approach the level of restoration quality on real images is very high, thereby blurring and ringing caused by defocus can be effectively removed. In classical microscopy, lenses with very low aberration must be used, which puts a practical limit on their size and numerical aperture. A coherent microscope using the novel restoration method overcomes this limitation. In contrast to incoherent microscopy, severe optical aberrations including defocus can be removed, hence the requirements on the quality of the optics are lower. This can be exploited for an essential price reduction of the optical system. It can be also used to achieve higher resolution than in classical microscopy, using lenses with high numerical aperture and high aberration. All this makes the coherent microscopy superior to the traditional incoherent in suited applications.

5.
Sensors (Basel) ; 15(12): 30716-35, 2015 Dec 05.
Article in English | MEDLINE | ID: mdl-26690168

ABSTRACT

Several acoustic and optical techniques have been used for characterizing natural and anthropogenic gas leaks (carbon dioxide, methane) from the ocean floor. Here, single-camera based methods for bubble stream observation have become an important tool, as they help estimating flux and bubble sizes under certain assumptions. However, they record only a projection of a bubble into the camera and therefore cannot capture the full 3D shape, which is particularly important for larger, non-spherical bubbles. The unknown distance of the bubble to the camera (making it appear larger or smaller than expected) as well as refraction at the camera interface introduce extra uncertainties. In this article, we introduce our wide baseline stereo-camera deep-sea sensor bubble box that overcomes these limitations, as it observes bubbles from two orthogonal directions using calibrated cameras. Besides the setup and the hardware of the system, we discuss appropriate calibration and the different automated processing steps deblurring, detection, tracking, and 3D fitting that are crucial to arrive at a 3D ellipsoidal shape and rise speed of each bubble. The obtained values for single bubbles can be aggregated into statistical bubble size distributions or fluxes for extrapolation based on diffusion and dissolution models and large scale acoustic surveys. We demonstrate and evaluate the wide baseline stereo measurement model using a controlled test setup with ground truth information.

SELECTION OF CITATIONS
SEARCH DETAIL