Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 9(1): 4438, 2018 10 25.
Article in English | MEDLINE | ID: mdl-30361514

ABSTRACT

Allogeneic transplantation (allo-HCT) has led to the cure of HIV in one individual, raising the question of whether transplantation can eradicate the HIV reservoir. To test this, we here present a model of allo-HCT in SHIV-infected, cART-suppressed nonhuman primates. We infect rhesus macaques with SHIV-1157ipd3N4, suppress them with cART, then transplant them using MHC-haploidentical allogeneic donors during continuous cART. Transplant results in ~100% myeloid donor chimerism, and up to 100% T-cell chimerism. Between 9 and 47 days post-transplant, terminal analysis shows that while cell-associated SHIV DNA levels are reduced in the blood and in lymphoid organs post-transplant, the SHIV reservoir persists in multiple organs, including the brain. Sorting of donor-vs.-recipient cells reveals that this reservoir resides in recipient cells. Moreover, tetramer analysis indicates a lack of virus-specific donor immunity post-transplant during continuous cART. These results suggest that early post-transplant, allo-HCT is insufficient for recipient reservoir eradication despite high-level donor chimerism and GVHD.


Subject(s)
Disease Reservoirs/virology , Hematopoietic Stem Cell Transplantation , Major Histocompatibility Complex , Simian Immunodeficiency Virus/physiology , Transplantation, Haploidentical , Animals , Antiretroviral Therapy, Highly Active , CD8-Positive T-Lymphocytes/immunology , DNA, Viral/metabolism , Macaca mulatta , RNA, Viral/metabolism , Simian Acquired Immunodeficiency Syndrome/drug therapy , Simian Acquired Immunodeficiency Syndrome/immunology , Simian Acquired Immunodeficiency Syndrome/virology , Transplantation, Homologous
2.
Sci Transl Med ; 9(408)2017 Sep 20.
Article in English | MEDLINE | ID: mdl-28931653

ABSTRACT

A critical question facing the field of transplantation is how to control effector T cell (Teff) activation while preserving regulatory T cell (Treg) function. Standard calcineurin inhibitor-based strategies can partially control Teffs, but breakthrough activation still occurs, and these agents are antagonistic to Treg function. Conversely, mechanistic target of rapamycin (mTOR) inhibition with sirolimus is more Treg-compatible but is inadequate to fully control Teff activation. In contrast, blockade of OX40L signaling has the capacity to partially control Teff activation despite maintaining Treg function. We used the nonhuman primate graft-versus-host disease (GVHD) model to probe the efficacy of combinatorial immunomodulation with sirolimus and the OX40L-blocking antibody KY1005. Our results demonstrate significant biologic activity of KY1005 alone (prolonging median GVHD-free survival from 8 to 19.5 days), as well as marked, synergistic control of GVHD with KY1005 + sirolimus (median survival time, >100 days; P < 0.01 compared to all other regimens), which was associated with potent control of both TH/TC1 (T helper cell 1/cytotoxic T cell 1) and TH/TC17 activation. Combined administration also maintained Treg reconstitution [resulting in an enhanced Treg/Teff ratio (40% over baseline) in the KY1005/sirolimus cohort compared to a 2.9-fold decrease in the unprophylaxed GVHD cohort]. This unique immunologic signature resulted in transplant recipients that were able to control GVHD for the length of analysis and to down-regulate donor/recipient alloreactivity despite maintaining anti-third-party responses. These data indicate that combined OX40L blockade and sirolimus represents a promising strategy to induce immune balance after transplant and is an important candidate regimen for clinical translation.


Subject(s)
Hematopoietic Stem Cell Transplantation , Lymphocyte Activation/immunology , OX40 Ligand/antagonists & inhibitors , T-Lymphocytes, Regulatory/immunology , TOR Serine-Threonine Kinases/antagonists & inhibitors , CD11c Antigen/metabolism , CD3 Complex/metabolism , Cell Proliferation/drug effects , Cytokines/metabolism , Dendritic Cells/drug effects , Dendritic Cells/metabolism , Drug Synergism , Graft vs Host Disease/drug therapy , Graft vs Host Disease/immunology , Humans , Immunity/drug effects , Lymphocyte Activation/drug effects , Myeloid Cells/drug effects , Myeloid Cells/metabolism , OX40 Ligand/metabolism , Signal Transduction/drug effects , Sirolimus/pharmacology , Sirolimus/therapeutic use , Survival Analysis , T-Lymphocytes, Regulatory/drug effects , TOR Serine-Threonine Kinases/metabolism , Transcription, Genetic/drug effects , Transplantation, Homologous , Up-Regulation/drug effects
3.
Blood ; 128(21): 2568-2579, 2016 11 24.
Article in English | MEDLINE | ID: mdl-27758873

ABSTRACT

One of the central challenges of transplantation is the development of alloreactivity despite the use of multiagent immunoprophylaxis. Effective control of this immune suppression-resistant T-cell activation represents one of the key unmet needs in the fields of both solid-organ and hematopoietic stem cell transplant (HCT). To address this unmet need, we have used a highly translational nonhuman primate (NHP) model to interrogate the transcriptional signature of T cells during breakthrough acute graft-versus-host disease (GVHD) that occurs in the setting of clinically relevant immune suppression and compared this to the hyperacute GVHD, which develops in unprophylaxed or suboptimally prophylaxed transplant recipients. Our results demonstrate the complex character of the alloreactivity that develops during ongoing immunoprophylaxis and identify 3 key transcriptional hallmarks of breakthrough acute GVHD that are not observed in hyperacute GVHD: (1) T-cell persistence rather than proliferation, (2) evidence for highly inflammatory transcriptional programming, and (3) skewing toward a T helper (Th)/T cytotoxic (Tc)17 transcriptional program. Importantly, the gene coexpression profiles from human HCT recipients who developed GVHD while on immunosuppressive prophylactic agents recapitulated the patterns observed in NHP, and demonstrated an evolution toward a more inflammatory signature as time posttransplant progressed. These results strongly implicate the evolution of both inflammatory and interleukin 17-based immune pathogenesis in GVHD, and provide the first map of this evolving process in primates in the setting of clinically relevant immunomodulation. This map represents a novel transcriptomic resource for further systems-based efforts to study the breakthrough alloresponse that occurs posttransplant despite immunoprophylaxis and to develop evidence-based strategies for effective treatment of this disease.


Subject(s)
Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Interleukin-17/immunology , T-Lymphocytes, Cytotoxic , T-Lymphocytes, Helper-Inducer , Acute Disease , Allografts , Animals , Disease Models, Animal , Female , Graft vs Host Disease/immunology , Graft vs Host Disease/pathology , Graft vs Host Disease/prevention & control , Haplorhini , Humans , Inflammation/immunology , Inflammation/pathology , Inflammation/therapy , Male , T-Lymphocytes, Cytotoxic/immunology , T-Lymphocytes, Cytotoxic/pathology , T-Lymphocytes, Helper-Inducer/immunology , T-Lymphocytes, Helper-Inducer/pathology
4.
PLoS One ; 9(12): e115506, 2014.
Article in English | MEDLINE | ID: mdl-25541998

ABSTRACT

Plasmodium vivax malaria causes significant morbidity and mortality worldwide, and only one drug is in clinical use that can kill the hypnozoites that cause P. vivax relapses. HIV and P. vivax malaria geographically overlap in many areas of the world, including South America and Asia. Despite the increasing body of knowledge regarding HIV protease inhibitors (HIV PIs) on P. falciparum malaria, there are no data regarding the effects of these treatments on P. vivax's hypnozoite form and clinical relapses of malaria. We have previously shown that the HIV protease inhibitor lopinavir-ritonavir (LPV-RTV) and the antibiotic trimethoprim sulfamethoxazole (TMP-SMX) inhibit Plasmodium actively dividing liver stages in rodent malarias and in vitro in P. falciparum, but effect against Plasmodium dormant hypnozoite forms remains untested. Separately, although other antifolates have been tested against hypnozoites, the antibiotic trimethoprim sulfamethoxazole, commonly used in HIV infection and exposure management, has not been evaluated for hypnozoite-killing activity. Since Plasmodium cynomolgi is an established animal model for the study of liver stages of malaria as a surrogate for P. vivax infection, we investigated the antimalarial activity of these drugs on Plasmodium cynomolgi relapsing malaria in rhesus macaques. Herein, we demonstrate that neither TMP-SMX nor LPV-RTV kills hypnozoite parasite liver stage forms at the doses tested. Because HIV and malaria geographically overlap, and more patients are being managed for HIV infection and exposure, understanding HIV drug impact on malaria infection is important.


Subject(s)
Antimalarials/therapeutic use , HIV Protease Inhibitors/therapeutic use , Lopinavir/therapeutic use , Malaria/drug therapy , Ritonavir/therapeutic use , Sulfamethoxazole/therapeutic use , Trimethoprim/therapeutic use , Animals , Female , Macaca mulatta , Malaria/etiology , Male , Plasmodium cynomolgi
5.
Malar J ; 13: 215, 2014 Jun 03.
Article in English | MEDLINE | ID: mdl-24893777

ABSTRACT

BACKGROUND: When rhesus monkeys (Macaca mulatta) are used to test malaria vaccines, animals are often challenged by the intravenous injection of sporozoites. However, natural exposure to malaria comes via mosquito bite, and antibodies can neutralize sporozoites as they traverse the skin. Thus, intravenous injection may not fairly assess humoral immunity from anti-sporozoite malaria vaccines. To better assess malaria vaccines in rhesus, a method to challenge large numbers of monkeys by mosquito bite was developed. METHODS: Several species and strains of mosquitoes were tested for their ability to produce Plasmodium knowlesi sporozoites. Donor monkey parasitaemia effects on oocyst and sporozoite numbers and mosquito mortality were documented. Methylparaben added to mosquito feed was tested to improve mosquito survival. To determine the number of bites needed to infect a monkey, animals were exposed to various numbers of P. knowlesi-infected mosquitoes. Finally, P. knowlesi-infected mosquitoes were used to challenge 17 monkeys in a malaria vaccine trial, and the effect of number of infectious bites on monkey parasitaemia was documented. RESULTS: Anopheles dirus, Anopheles crascens, and Anopheles dirus X (a cross between the two species) produced large numbers of P. knowlesi sporozoites. Mosquito survival to day 14, when sporozoites fill the salivary glands, averaged only 32% when donor monkeys had a parasitaemia above 2%. However, when donor monkey parasitaemia was below 2%, mosquitoes survived twice as well and contained ample sporozoites in their salivary glands. Adding methylparaben to sugar solutions did not improve survival of infected mosquitoes. Plasmodium knowlesi was very infectious, with all monkeys developing blood stage infections if one or more infected mosquitoes successfully fed. There was also a dose-response, with monkeys that received higher numbers of infected mosquito bites developing malaria sooner. CONCLUSIONS: Anopheles dirus, An. crascens and a cross between these two species all were excellent vectors for P. knowlesi. High donor monkey parasitaemia was associated with poor mosquito survival. A single infected mosquito bite is likely sufficient to infect a monkey with P. knowlesi. It is possible to efficiently challenge large groups of monkeys by mosquito bite, which will be useful for P. knowlesi vaccine studies.


Subject(s)
Anopheles/physiology , Anopheles/parasitology , Malaria/transmission , Plasmodium knowlesi/growth & development , Animals , Female , Macaca mulatta , Malaria Vaccines/administration & dosage , Male , Survival Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...