Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Physiol ; 12: 734217, 2021.
Article in English | MEDLINE | ID: mdl-34658919

ABSTRACT

Liver volumetry is an important tool in clinical practice. The calculation of liver volume is primarily based on Computed Tomography. Unfortunately, automatic segmentation algorithms based on handcrafted features tend to leak segmented objects into surrounding tissues like the heart or the spleen. Currently, convolutional neural networks are widely used in various applications of computer vision including image segmentation, while providing very promising results. In our work, we utilize robustly segmentable structures like the spine, body surface, and sagittal plane. They are used as key points for position estimation inside the body. The signed distance fields derived from these structures are calculated and used as an additional channel on the input of our convolutional neural network, to be more specific U-Net, which is widely used in medical image segmentation tasks. Our work shows that this additional position information improves the results of the segmentation. We test our approach in two experiments on two public datasets of Computed Tomography images. To evaluate the results, we use the Accuracy, the Hausdorff distance, and the Dice coefficient. Code is publicly available at: https://gitlab.com/hachaf/liver-segmentation.git.

2.
Sensors (Basel) ; 20(24)2020 Dec 10.
Article in English | MEDLINE | ID: mdl-33321713

ABSTRACT

Decellularized tissue is an important source for biological tissue engineering. Evaluation of the quality of decellularized tissue is performed using scanned images of hematoxylin-eosin stained (H&E) tissue sections and is usually dependent on the observer. The first step in creating a tool for the assessment of the quality of the liver scaffold without observer bias is the automatic segmentation of the whole slide image into three classes: the background, intralobular area, and extralobular area. Such segmentation enables to perform the texture analysis in the intralobular area of the liver scaffold, which is crucial part in the recellularization procedure. Existing semi-automatic methods for general segmentation (i.e., thresholding, watershed, etc.) do not meet the quality requirements. Moreover, there are no methods available to solve this task automatically. Given the low amount of training data, we proposed a two-stage method. The first stage is based on classification of simple hand-crafted descriptors of the pixels and their neighborhoods. This method is trained on partially annotated data. Its outputs are used for training of the second-stage approach, which is based on a convolutional neural network (CNN). Our architecture inspired by U-Net reaches very promising results, despite a very low amount of the training data. We provide qualitative and quantitative data for both stages. With the best training setup, we reach 90.70% recognition accuracy.


Subject(s)
Image Processing, Computer-Assisted , Liver , Semantics , Liver/diagnostic imaging , Neural Networks, Computer
3.
J Phys Chem B ; 119(30): 9706-16, 2015 Jul 30.
Article in English | MEDLINE | ID: mdl-26146848

ABSTRACT

Several methods based on single- and two-photon fluorescence detected linear dichroism have recently been used to determine the orientational distributions of fluorescent dyes in lipid membranes. However, these determinations relied on simplified descriptions of nonlinear anisotropic properties of the dye molecules, using a transition dipole-moment-like vector instead of an absorptivity tensor. To investigate the validity of the vector approximation, we have now carried out a combination of computer simulations and polarization microscopy experiments on two representative fluorescent dyes (DiI and F2N12S) embedded in aqueous phosphatidylcholine bilayers. Our results indicate that a simplified vector-like treatment of the two-photon transition tensor is applicable for molecular geometries sampled in the membrane at ambient conditions. Furthermore, our results allow evaluation of several distinct polarization microscopy techniques. In combination, our results point to a robust and accurate experimental and computational treatment of orientational distributions of DiI, F2N12S, and related dyes (including Cy3, Cy5, and others), with implications to monitoring physiologically relevant processes in cellular membranes in a novel way.


Subject(s)
Cell Membrane/chemistry , Fluorescent Dyes/chemistry , Nonlinear Dynamics , Optical Phenomena , Phospholipids , Molecular Conformation , Molecular Dynamics Simulation
SELECTION OF CITATIONS
SEARCH DETAIL
...