Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Biol ; 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38876101

ABSTRACT

Providing outdoor recreational opportunities to people and protecting wildlife are dual goals of many land managers. However, recreation is associated with negative effects on wildlife, ranging from increased stress hormones1,2 to shifts in habitat use3,4,5 to lowered reproductive success.6,7 Noise from recreational activities can be far reaching and have similar negative effects on wildlife, yet the impacts of these auditory encounters are less studied and are often unobservable. We designed a field-based experiment to both isolate and quantify the effects of recreation noise on several mammal species and test the effects of different recreation types and group sizes. Animals entering our sampling arrays triggered cameras to record video and broadcast recreation noise from speakers ∼20 m away. Our design allowed us to observe and classify behaviors of wildlife as they were exposed to acoustic stimuli. We found wildlife were 3.1-4.7 times more likely to flee and were vigilant for 2.2-3.0 times longer upon hearing recreation noise compared with controls (natural sounds and no noise). Wildlife abundance at our sampling arrays was 1.5 times lower the week following recreation noise deployments. Noise from larger groups of vocal hikers and mountain bikers caused the highest probability of fleeing (6-8 times more likely to flee). Elk were the most sensitive species to recreation noise, and large carnivores were the least sensitive. Our findings indicate that recreation noise alone caused anti-predator responses in wildlife, and as outdoor recreation continues to increase in popularity and geographic extent,8,9 noise from recreation may result in degraded or indirect wildlife habitat loss.

3.
Mol Ecol ; 32(19): 5211-5227, 2023 10.
Article in English | MEDLINE | ID: mdl-37602946

ABSTRACT

Understanding how human infrastructure and other landscape attributes affect genetic differentiation in animals is an important step for identifying and maintaining dispersal corridors for these species. We built upon recent advances in the field of landscape genetics by using an individual-based and multiscale approach to predict landscape-level genetic connectivity for grizzly bears (Ursus arctos) across ~100,000 km2 in Canada's southern Rocky Mountains. We used a genetic dataset with 1156 unique individuals genotyped at nine microsatellite loci to identify landscape characteristics that influence grizzly bear gene flow at multiple spatial scales and map predicted genetic connectivity through a matrix of rugged terrain, large protected areas, highways and a growing human footprint. Our corridor-based modelling approach used a machine learning algorithm that objectively parameterized landscape resistance, incorporated spatial cross validation and variable selection and explicitly accounted for isolation by distance. This approach avoided overfitting, discarded variables that did not improve model performance across withheld test datasets and spatial predictive capacity compared to random cross-validation. We found that across all spatial scales, geographic distance explained more variation in genetic differentiation in grizzly bears than landscape variables. Human footprint inhibited connectivity across all spatial scales, while open canopies inhibited connectivity at the broadest spatial scale. Our results highlight the negative effect of human footprint on genetic connectivity, provide strong evidence for using spatial cross-validation in landscape genetics analyses and show that multiscale analyses provide additional information on how landscape variables affect genetic differentiation.


Subject(s)
Ecosystem , Ursidae , Humans , Animals , Ursidae/genetics , Genetic Drift , Gene Flow
4.
Glob Chang Biol ; 29(10): 2681-2696, 2023 05.
Article in English | MEDLINE | ID: mdl-36880282

ABSTRACT

Species across the planet are shifting their ranges to track suitable climate conditions in response to climate change. Given that protected areas have higher quality habitat and often harbor higher levels of biodiversity compared to unprotected lands, it is often assumed that protected areas can serve as steppingstones for species undergoing climate-induced range shifts. However, there are several factors that may impede successful range shifts among protected areas, including the distance that must be traveled, unfavorable human land uses and climate conditions along potential movement routes, and lack of analogous climates. Through a species-agnostic lens, we evaluate these factors across the global terrestrial protected area network as measures of climate connectivity, which is defined as the ability of a landscape to facilitate or impede climate-induced movement. We found that over half of protected land area and two-thirds of the number of protected units across the globe are at risk of climate connectivity failure, casting doubt on whether many species can successfully undergo climate-induced range shifts among protected areas. Consequently, protected areas are unlikely to serve as steppingstones for a large number of species under a warming climate. As species disappear from protected areas without commensurate immigration of species suited to the emerging climate (due to climate connectivity failure), many protected areas may be left with a depauperate suite of species under climate change. Our findings are highly relevant given recent pledges to conserve 30% of the planet by 2030 (30 × 30), underscore the need for innovative land management strategies that allow for species range shifts, and suggest that assisted colonization may be necessary to promote species that are adapted to the emerging climate.


Subject(s)
Conservation of Natural Resources , Ecosystem , Humans , Biodiversity , Climate Change , Travel
5.
Mov Ecol ; 7: 19, 2019.
Article in English | MEDLINE | ID: mdl-31338195

ABSTRACT

BACKGROUND: With the growth and expansion of human development, large mammals will increasingly encounter humans, elevating the likelihood of human-wildlife conflicts. Understanding the behavior and movement of large mammals, particularly around human development, is important for crafting effective conservation and management plans for these species. METHODS: We used GPS collar data from American black bears (Ursus americanus) to determine how seasonal food resources and human development affected bear movement patterns and resource use across the Commonwealth of Massachusetts. RESULTS: We found that though bears moved more and avoided human development during crepuscular and daylight hours than at night, bears preferentially moved through human dominated areas at night. This indicates bears were mitigating the risk of human development by altering their behavior to exploit these areas when human activity is low. This behavioral shift was most prominent in the spring, when natural foods are scarce, and fall, when energetic demands are high. We also observed a high degree of inter-individual variability among our sample of bears. Bears with a higher density of houses in their home ranges (~ 75 houses/km2) displayed less avoidance of human development than more rural bears. Furthermore, bear movement models had different explanatory variables, with preference or avoidance of a variable being dependent on the individual bear. To account for this individuality in our predictive surfaces, we projected the probability of movement for each season and time of day using a spatially weighted surface centered on each bear's home range. CONCLUSIONS: We found that black bears in Massachusetts are operating in a landscape of fear and are altering their movement patterns to use developed areas when human activity is low. We also found seasonal and diel differences among individual bears in resource selection during movement. Accounting for these individual, seasonal, and diel differences when assessing movement for large mammals is especially important if predictive surfaces are to be used in identifying areas for conservation and management.

6.
Environ Manage ; 62(3): 518-528, 2018 09.
Article in English | MEDLINE | ID: mdl-29744581

ABSTRACT

Wildlife-vehicle collisions are a human safety issue and may negatively impact wildlife populations. Most wildlife-vehicle collision studies predict high-risk road segments using only collision data. However, these data lack biologically relevant information such as wildlife population densities and successful road-crossing locations. We overcome this shortcoming with a new method that combines successful road crossings with vehicle collision data, to identify road segments that have both high biological relevance and high risk. We used moose (Alces americanus) road-crossing locations from 20 moose collared with Global Positioning Systems as well as moose-vehicle collision (MVC) data in the state of Massachusetts, USA, to create multi-scale resource selection functions. We predicted the probability of moose road crossings and MVCs across the road network and combined these surfaces to identify road segments that met the dual criteria of having high biological relevance and high risk for MVCs. These road segments occurred mostly on larger roadways in natural areas and were surrounded by forests, wetlands, and a heterogenous mix of land cover types. We found MVCs resulted in the mortality of 3% of the moose population in Massachusetts annually. Although there have been only three human fatalities related to MVCs in Massachusetts since 2003, the human fatality rate was one of the highest reported in the literature. The rate of MVCs relative to the size of the moose population and the risk to human safety suggest a need for road mitigation measures, such as fencing, animal detection systems, and large mammal-crossing structures on roadways in Massachusetts.


Subject(s)
Accidents, Traffic/statistics & numerical data , Deer/physiology , Animals , Geographic Information Systems , Humans , Massachusetts , Models, Theoretical , Population Density , Probability
7.
PLoS One ; 13(3): e0194719, 2018.
Article in English | MEDLINE | ID: mdl-29579129

ABSTRACT

Broad scale population estimates of declining species are desired for conservation efforts. However, for many secretive species including large carnivores, such estimates are often difficult. Based on published density estimates obtained through camera trapping, presence/absence data, and globally available predictive variables derived from satellite imagery, we modelled density and occurrence of a large carnivore, the jaguar, across the species' entire range. We then combined these models in a hierarchical framework to estimate the total population. Our models indicate that potential jaguar density is best predicted by measures of primary productivity, with the highest densities in the most productive tropical habitats and a clear declining gradient with distance from the equator. Jaguar distribution, in contrast, is determined by the combined effects of human impacts and environmental factors: probability of jaguar occurrence increased with forest cover, mean temperature, and annual precipitation and declined with increases in human foot print index and human density. Probability of occurrence was also significantly higher for protected areas than outside of them. We estimated the world's jaguar population at 173,000 (95% CI: 138,000-208,000) individuals, mostly concentrated in the Amazon Basin; elsewhere, populations tend to be small and fragmented. The high number of jaguars results from the large total area still occupied (almost 9 million km2) and low human densities (< 1 person/km2) coinciding with high primary productivity in the core area of jaguar range. Our results show the importance of protected areas for jaguar persistence. We conclude that combining modelling of density and distribution can reveal ecological patterns and processes at global scales, can provide robust estimates for use in species assessments, and can guide broad-scale conservation actions.


Subject(s)
Panthera/physiology , Animals , Conservation of Natural Resources , Ecosystem , Models, Theoretical , Population Density
8.
PLoS One ; 12(6): e0179570, 2017.
Article in English | MEDLINE | ID: mdl-28609466

ABSTRACT

The importance of examining multiple hierarchical levels when modeling resource use for wildlife has been acknowledged for decades. Multi-level resource selection functions have recently been promoted as a method to synthesize resource use across nested organizational levels into a single predictive surface. Analyzing multiple scales of selection within each hierarchical level further strengthens multi-level resource selection functions. We extend this multi-level, multi-scale framework to modeling resistance for wildlife by combining multi-scale resistance surfaces from two data types, genetic and movement. Resistance estimation has typically been conducted with one of these data types, or compared between the two. However, we contend it is not an either/or issue and that resistance may be better-modeled using a combination of resistance surfaces that represent processes at different hierarchical levels. Resistance surfaces estimated from genetic data characterize temporally broad-scale dispersal and successful breeding over generations, whereas resistance surfaces estimated from movement data represent fine-scale travel and contextualized movement decisions. We used telemetry and genetic data from a long-term study on pumas (Puma concolor) in a highly developed landscape in southern California to develop a multi-level, multi-scale resource selection function and a multi-level, multi-scale resistance surface. We used these multi-level, multi-scale surfaces to identify resource use patches and resistant kernel corridors. Across levels, we found puma avoided urban, agricultural areas, and roads and preferred riparian areas and more rugged terrain. For other landscape features, selection differed among levels, as did the scales of selection for each feature. With these results, we developed a conservation plan for one of the most isolated puma populations in the U.S. Our approach captured a wide spectrum of ecological relationships for a population, resulted in effective conservation planning, and can be readily applied to other wildlife species.


Subject(s)
Animals, Wild/physiology , Conservation of Natural Resources/methods , Ecosystem , Puma/physiology , Algorithms , Animals , Animals, Wild/genetics , California , Geography , Human Activities , Humans , Linkage Disequilibrium , Microsatellite Repeats/genetics , Models, Theoretical , Population Dynamics , Predatory Behavior/physiology , Puma/genetics , Telemetry/methods
9.
Ecol Evol ; 6(12): 4115-28, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27516868

ABSTRACT

Mantel-based tests have been the primary analytical methods for understanding how landscape features influence observed spatial genetic structure. Simulation studies examining Mantel-based approaches have highlighted major challenges associated with the use of such tests and fueled debate on when the Mantel test is appropriate for landscape genetics studies. We aim to provide some clarity in this debate using spatially explicit, individual-based, genetic simulations to examine the effects of the following on the performance of Mantel-based methods: (1) landscape configuration, (2) spatial genetic nonequilibrium, (3) nonlinear relationships between genetic and cost distances, and (4) correlation among cost distances derived from competing resistance models. Under most conditions, Mantel-based methods performed poorly. Causal modeling identified the true model only 22% of the time. Using relative support and simple Mantel r values boosted performance to approximately 50%. Across all methods, performance increased when landscapes were more fragmented, spatial genetic equilibrium was reached, and the relationship between cost distance and genetic distance was linearized. Performance depended on cost distance correlations among resistance models rather than cell-wise resistance correlations. Given these results, we suggest that the use of Mantel tests with linearized relationships is appropriate for discriminating among resistance models that have cost distance correlations <0.85 with each other for causal modeling, or <0.95 for relative support or simple Mantel r. Because most alternative parameterizations of resistance for the same landscape variable will result in highly correlated cost distances, the use of Mantel test-based methods to fine-tune resistance values will often not be effective.

SELECTION OF CITATIONS
SEARCH DETAIL
...