Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Data Brief ; 46: 108878, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36660445

ABSTRACT

Dendritic cells are the sentinels of the immune system, linking the innate and adaptive immune response. Myeloid and dendritic cell models have been successfully used in in vitro approaches to predict adverse outcomes such as skin sensitization. We here exposed a well-characterized human dendritic cell-like cell line to agricultural chemicals, including fungicide formulations, active ingredients, adjuvants and defined mixtures for 24 h to profile induced changes on protein levels. Cell pellets were harvested and prepared for bottom-up label-free analysis with peptide separation on an EASY-nano LC system 1200 coupled online with a QExactive HF-X mass spectrometer with data-dependent acquisition (DDA). The raw data files and processed quantitative data have been deposited to ProteomeXchange with the data identification number PXD034624 and are described here. The data in this article may serve as a resource for researchers interested in e.g. human toxicology, immunology, cell biology and pharmacology.

2.
Toxicol Rep ; 9: 2030-2041, 2022.
Article in English | MEDLINE | ID: mdl-36518395

ABSTRACT

New approaches based on -omics technologies can identify biomarkers and processes regulated in response to xenobiotics, and thus support toxicological risk assessments. This is vital to meet the challenges associated with "cocktail effects", i.e. combination effects of chemicals present simultaneously in a product, our environment, and/or our body. For plant protection products (PPPs), investigations largely focus on active ingredients such as herbicides and fungicides. In this study, we have analyzed agricultural chemicals, two surfactants (poly(oxy-1,2-ethanediyl), alpha-sulfo-omega-[2,4,6-tris(1-phenylethyl)phenoxy]-, ammonium salt, POL; N,N-dimethylcapramide, NND), and one preservative, 1,2-benzisothiazol-3(2 H)-one (BEN) used as adjuvants in PPPs, and further three fungicide PPPs, Proline EC 250, Shirlan, Folicur Xpert, containing the adjuvants, and other major individual constituents (fluazinam (FLU), prothioconazole (PRO), tebuconazole (TEB)) as well as defined mixtures ("mixes") thereof using several in vitro approaches. All investigated single agricultural chemicals were predicted as skin sensitizers using an in vitro transcriptomic assay based on a dendritic cell model. For selected chemicals and mixes, also skin sensitization potency was predicted. The preservative BEN induced significant changes in cytokine secretion and dendritic cell activation marker CD86 expression. The surfactant NND changed cytokine secretion only and the POL only affected CD86 expression. Proteomic analyses revealed unique response profiles for all adjuvants, an oxidative stress pattern response in BEN-treated cells, and differentially abundant proteins associated with cholesterol homeostasis in response to POL. In summary, we find responses to agricultural chemicals and products consistent with the dendritic cell model reacting to chemical exposure with oxidative stress, ER stress, effects on autophagy, and metabolic changes especially related to cholesterol homeostasis. After exposure to certain mixes, novel proteins or transcripts were differentially expressed and these were not detected for any single constituents, supporting the occurrence of cocktail effects. This indicates that all chemicals in a PPP can contribute to the toxicity profile of a PPP, including their skin sensitizing/immunotoxic properties.

3.
Molecules ; 25(24)2020 Dec 15.
Article in English | MEDLINE | ID: mdl-33333981

ABSTRACT

Food additives such as emulsifiers are used in increasing quantities in the food industry. The aim of this study was to compare three different emulsifiers (polysorbate 80 (P80), carboxymethyl cellulose (CMC), and ß-lactoglobulin (ß-lac) with regards to their effect on the stimulation of immune cells and intestinal permeability. The immune stimulatory effects were studied in the myeloid cell line MUTZ-3-cells, while the change in intestinal permeability was studied in the Caco-2 cell line and ex vivo in the Ussing chamber system using small intestinal fragments from rats. The tested concentrations of the emulsifiers ranged from 0.02% up to 1%, which are concentrations commonly used in the food industry. The results showed that P80 affected both the myeloid cells and the intestinal permeability more than CMC (p < 0.05) and ß-lac (p < 0.05) at the highest concentration. CMC was found to neither affect the permeability in the intestine nor the MUTZ-3 cells, while ß-lac changed the permeability in the total part of the small intestine in rats. These findings indicate that P80 might be more cytotoxic compared to the other two emulsifiers.


Subject(s)
Emulsifying Agents/pharmacology , Intestinal Mucosa/drug effects , Intestinal Mucosa/metabolism , Animals , Caco-2 Cells , Dose-Response Relationship, Drug , Humans , Permeability/drug effects , Rats
4.
J Proteomics ; 217: 103647, 2020 04 15.
Article in English | MEDLINE | ID: mdl-32006680

ABSTRACT

We investigated the skin sensitization hazard of glyphosate, the surfactant polyethylated tallow amine (POEA) and two commercial glyphosate-containing formulations using different omics-technologies based on a human dendritic cell (DC)-like cell line. First, the GARD™skin assay, investigating changes in the expression of 200 transcripts upon cell exposure to xenobiotics, was used for skin sensitization prediction. POEA and the formulations were classified as skin sensitizers while glyphosate alone was classified as a non-sensitizer. Interestingly, the mixture of POEA together with glyphosate displayed a similar sensitizing prediction as POEA alone, indicating that glyphosate likely does not increase the sensitizing capacity when associated with POEA. Moreover, mass spectrometry analysis identified differentially regulated protein groups and predicted molecular pathways based on a proteomic approach in response to cell exposures with glyphosate, POEA and the glyphosate-containing formulations. Based on the protein expression data, predicted pathways were linked to immunologically relevant events and regulated proteins further to cholesterol biosynthesis and homeostasis as well as to autophagy, identifying novel aspects of DC responses after exposure to xenobiotics. In summary, we here present an integrative analysis involving advanced technologies to elucidate the molecular mechanisms behind DC activation in the skin sensitization process triggered by the investigated agrochemical materials. SIGNIFICANCE: The use of glyphosate has increased worldwide, and much effort has been made to improve risk assessments and to further elucidate the mechanisms behind any potential human health hazard of this chemical and its agrochemical formulations. In this context, omics-based techniques can provide a multiparametric approach, including several biomarkers, to expand the mechanistic knowledge of xenobiotics-induced toxicity. Based on this, we performed the integration of GARD™skin and proteomic data to elucidate the skin sensitization hazard of POEA, glyphosate and its two commercial mixtures, and to investigate cellular responses more in detail on protein level. The proteomic data indicate the regulation of immune response-related pathways and proteins associated with cholesterol biosynthesis and homeostasis as well as to autophagy, identifying novel aspects of DC responses after exposure to xenobiotics. Therefore, our data show the applicability of a multiparametric integrated approach for the mechanism-based hazard evaluation of xenobiotics, eventually complementing decision making in the holistic risk assessment of chemicals regarding their allergenic potential in humans.


Subject(s)
Agrochemicals , Herbicides , Glycine/analogs & derivatives , Herbicides/toxicity , Humans , Proteomics , Transcriptome , Glyphosate
6.
Toxicol In Vitro ; 60: 144-153, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31082492

ABSTRACT

Allergic contact dermatitis (ACD) is one of the most common forms of immunotoxicity, and increased understanding of how chemicals trigger these adverse reactions is needed in order to treat or design testing strategies to identify and subsequently avoid exposure to such substances. In this study, we investigated the cellular response induced by rubber chemicals in a dendritic cell (DC) model, focusing on the structurally similar chemicals diethylthiocarbamylbenzothiazole sulfide and dimethylthiocarbamylbenzothiazole sulfide, with regard to regulation of microRNA, and messenger RNA expression. Only a few miRNAs were found to be commonly regulated by both rubber chemicals, among them miR1973, while the overall miRNA expression profiles were diverse. Similarly, out of approximately 500 differentially regulated transcripts for each chemical, about 60% overlapped, while remaining were unique. The pathways predicted to be enriched in the cell model by stimulation with the rubber chemicals were linked to immunological events, relevant in the context of ACD. These results suggest that small structural differences can trigger specific activation of the immune system in response to chemicals. The here presented mechanistic data can be valuable in explaining the immunotoxicological events in DC activation after exposure to skin sensitizing chemicals, and can contribute to understanding, preventing and treating ACD.


Subject(s)
Benzothiazoles/toxicity , Haptens/toxicity , MicroRNAs , Thiocarbamates/toxicity , Cell Line , Computer Simulation , Humans , Rubber
7.
Cell Commun Signal ; 16(1): 36, 2018 07 02.
Article in English | MEDLINE | ID: mdl-29966518

ABSTRACT

BACKGROUND: Chemotherapeutic efficacy can be improved by targeting the structure and function of the extracellular matrix (ECM) in the carcinomal stroma. This can be accomplished by e.g. inhibiting TGF-ß1 and -ß3 or treating with Imatinib, which results in scarcer collagen fibril structure in xenografted human KAT-4/HT29 (KAT-4) colon adenocarcinoma. METHODS: The potential role of αVß6 integrin-mediated activation of latent TGF-ß was studied in cultured KAT-4 and Capan-2 human ductal pancreatic carcinoma cells as well as in xenograft carcinoma generated by these cells. The monoclonal αVß6 integrin-specific monoclonal antibody 3G9 was used to inhibit the αVß6 integrin activity. RESULTS: Both KAT-4 and Capan-2 cells expressed the αVß6 integrin but only KAT-4 cells could utilize this integrin to activate latent TGF-ß in vitro. Only when Capan-2 cells were co-cultured with human F99 fibroblasts was the integrin activation mechanism triggered, suggesting a more complex, fibroblast-dependent, activation pathway. In nude mice, a 10-day treatment with 3G9 reduced collagen fibril thickness and interstitial fluid pressure in KAT-4 but not in the more desmoplastic Capan-2 tumors that, to achieve a similar effect, required a prolonged 3G9 treatment. In contrast, a 10-day direct inhibition of TGF-ß1 and -ß3 reduced collagen fibril thickness in both tumor models. CONCLUSION: Our data demonstrate that the αVß6-directed activation of latent TGF-ß plays a pivotal role in modulating the stromal collagen network in carcinoma, but that the sensitivity to αVß6 inhibition depends on the simultaneous presence of alternative paths for latent TGF-ß activation and the extent of desmoplasia.


Subject(s)
Antigens, Neoplasm/immunology , Collagen/chemistry , Integrins/immunology , Animals , Antibodies, Monoclonal/immunology , Antigens, Neoplasm/metabolism , Cell Line, Tumor , Cell Transformation, Neoplastic , Collagen/metabolism , Extracellular Fluid/metabolism , Female , Gene Expression Profiling , Humans , Integrins/metabolism , Mice , Pressure , Transforming Growth Factor beta/metabolism
8.
Toxicol In Vitro ; 46: 155-162, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29017774

ABSTRACT

Many natural and industrial proteins are known to have properties that can result in type I hypersensitivity, however, to date, no validated test system exists that can predict the sensitizing potential of these allergens. Thus, the objective of this study was to develop a protocol based on the myeloid cell-based Genomic Allergen Rapid Detection (GARD) assay that can be used to assess and predict the capacity of protein allergens known to induce sensitization in the respiratory tract. Cellular responses induced by eight selected proteins were assessed using transcriptional profiling, flow cytometry and multiplex cytokine analysis. 391 potential biomarkers were identified as a predictive signature and a series of cross-validations supported the validity of the model. These results together with biological pathway analysis of the transcriptomic data indicate that the investigated cell system is able to capture relevant events linked to type I hypersensitization.


Subject(s)
Allergens/toxicity , Proteins/toxicity , Respiratory System/drug effects , Toxicity Tests/methods , Animal Testing Alternatives , Animals , Antigens, Surface/genetics , Antigens, Surface/metabolism , Biomarkers , Cytokines/genetics , Cytokines/metabolism , Dendritic Cells/drug effects , Dermatitis, Allergic Contact/genetics , Gene Expression Regulation/drug effects , Gene Expression Regulation/immunology , Humans , Respiratory System/immunology
9.
ALTEX ; 34(4): 539-559, 2017.
Article in English | MEDLINE | ID: mdl-29156079

ABSTRACT

Contact allergy induced by certain chemicals is a common health concern, and several alternative methods have been developed to fulfill the requirements of European legislation with regard to hazard assessment of potential skin sensitizers. However, validated methods, which provide information about the potency of skin sensitizers, are still lacking. The cell-based assay Genomic Allergen Rapid Detection (GARD), targeting key event 3, dendritic cell activation, of the skin sensitization AOP, uses gene expression profiling and a machine learning approach for the prediction of chemicals as sensitizers or non-sensitizers. Based on the GARD platform, we here expanded the assay to predict three sensitizer potency classes according to the European Classification, Labelling and Packaging (CLP) Regulation, targeting categories 1A (strong), 1B (weak) and no cat (non-sensitizer). Using a random forest approach and 70 training samples, a potential biomarker signature of 52 transcripts was identified. The resulting model could predict an independent test set consisting of 18 chemicals, six from each CLP category and all previously unseen to the model, with an overall accuracy of 78%. Importantly, the model was shown to be conservative and only underestimated the class label of one chemical. Furthermore, an association of defined chemical protein reactivity with distinct biological pathways illustrates that our transcriptional approach can reveal information contributing to the understanding of underlying mechanisms in sensitization.


Subject(s)
Allergens/toxicity , Biological Assay , Skin Irritancy Tests , Animal Testing Alternatives/methods , Biomarkers/analysis , Cell Line, Tumor , Dermatitis, Allergic Contact/etiology , Dermatitis, Allergic Contact/genetics , Dermatitis, Allergic Contact/immunology , Hazardous Substances/toxicity , Humans , In Vitro Techniques/methods , Risk Assessment , Skin
10.
Toxicol In Vitro ; 37: 178-188, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27638055

ABSTRACT

Allergic contact dermatitis (ACD) initiated by chemical sensitizers is an important public health concern. To prevent ACD, it is important to identify chemical allergens to limit the use of such compounds in various products. EU legislations, as well as increased mechanistic knowledge of skin sensitization have promoted development of non-animal based approaches for hazard classification of chemicals. GARD is an in vitro testing strategy based on measurements of a genomic biomarker signature. However, current GARD protocols are optimized for identification of predictive biomarker signatures, and not suitable for standardized screening. This study describes improvements to GARD to progress from biomarker discovery into a reliable and cost-effective assay for routine testing. Gene expression measurements were transferred to NanoString nCounter platform, normalization strategy was adjusted to fit serial arrival of testing substances, and a novel strategy to correct batch variations was presented. When challenging GARD with 29 compounds, sensitivity, specificity and accuracy could be estimated to 94%, 83% and 90%, respectively. In conclusion, we present a GARD workflow with improved sample capacity, retained predictive performance, and in a format adapted to standardized screening. We propose that GARD is ready to be considered as part of an integrated testing strategy for skin sensitization.


Subject(s)
Allergens/toxicity , Animal Testing Alternatives , Dermatitis, Allergic Contact/genetics , Haptens/toxicity , Biomarkers/analysis , Cell Line, Tumor , Gene Expression Profiling , Genome, Human , Humans , Support Vector Machine
11.
PLoS One ; 8(5): e64897, 2013.
Article in English | MEDLINE | ID: mdl-23738008

ABSTRACT

Cells are exposed to several types of integrin stimuli, which generate responses generally referred to as "integrin signals", but the specific responses to different integrin stimuli are poorly defined. In this study, signals induced by integrin ligation during cell attachment, mechanical force from intracellular contraction, or cell stretching by external force were compared. The elevated phosphorylation levels of several proteins during the early phase of cell attachment and spreading of fibroblast cell lines were not affected by inhibition of ROCK and myosin II activity, i.e. the reactions occurred independently of intracellular contractile force acting on the adhesion sites. The contraction-independent phosphorylation sites included ERK1/2 T202/Y204, AKT S473, p130CAS Y410, and cofilin S3. In contrast to cell attachment, cyclic stretching of the adherent cells induced a robust phosphorylation only of ERK1/2 and the phosphorylation levels of the other investigated proteins were not or only moderately affected by stretching. No major differences between signaling via α5ß1 or αvß3 integrins were detected. The importance of mitochondrial ROS for the integrin-induced signaling pathways was investigated using rotenone, a specific inhibitor of complex I in the respiratory chain. While rotenone only moderately reduced ATP levels and hardly affected the signals induced by cyclic cell stretching, it abolished the activation of AKT and reduced the actin polymerization rate in response to attachment in both cell lines. In contrast, scavenging of extracellular ROS with catalase or the vitamin C analog Asc-2P did not significantly influence the attachment-derived signaling, but caused a selective and pronounced enhancement of ERK1/2 phosphorylation in response to stretching. In conclusion, the results showed that "integrin signals" are composed of separate sets of reactions triggered by different types of integrin stimulation. Mitochondrial ROS and extracellular ROS had specific and distinct effects on the integrin signals induced by cell attachment and mechanical stretching.


Subject(s)
Integrins/metabolism , Mechanical Phenomena , Reactive Oxygen Species/metabolism , Signal Transduction , Ascorbic Acid/analogs & derivatives , Ascorbic Acid/pharmacology , Biomechanical Phenomena/drug effects , Catalase/metabolism , Cell Adhesion/drug effects , Cell Line , Humans , Intracellular Space/drug effects , Intracellular Space/metabolism , Ligands , Mitochondria/drug effects , Mitochondria/metabolism , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects
12.
Cell Signal ; 22(12): 1838-48, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20667469

ABSTRACT

Integrin-mediated cell adhesion activates several signaling effectors, including phosphatidylinositol 3-kinase (PI3K), a central mediator of cell motility and survival. To elucidate the molecular mechanisms of this important pathway the specific members of the PI3K family activated by different integrins have to be identified. Here, we studied the role of PI3K catalytic isoforms in ß1 integrin-induced lamellipodium protrusion and activation of Akt in fibroblasts. Real-time total internal reflection fluorescence imaging of the membrane-substrate interface demonstrated that ß1 integrin-mediated attachment induced rapid membrane spreading reaching essentially maximal contact area within 5-10 min. This process required actin polymerization and involved activation of PI3K. Isoform-selective pharmacological inhibition identified p110α as the PI3K catalytic isoform mediating both ß1 integrin-induced cell spreading and Akt phosphorylation. A K756L mutation in the membrane-proximal part of the ß1 integrin subunit, known to cause impaired Akt phosphorylation after integrin stimulation, induced slower cell spreading. The initial ß1 integrin-regulated cell spreading as well as Akt phosphorylation were sensitive to the tyrosine kinase inhibitor PP2, but were not dependent on Src family kinases, FAK or EGF/PDGF receptor transactivation. Notably, cells expressing a Ras binding-deficient p110α mutant were severely defective in integrin-induced Akt phosphorylation, but exhibited identical membrane spreading kinetics as wild-type p110α cells. We conclude that p110α mediates ß1 integrin-regulated activation of Akt and actin polymerization important for survival and lamellipodia dynamics. This could contribute to the tumorigenic properties of cells expressing constitutively active p110α.


Subject(s)
Cell Surface Extensions/physiology , Cell-Matrix Junctions/metabolism , Integrin beta1/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Animals , Antigens, Polyomavirus Transforming , Cell Adhesion/physiology , Cell Line, Transformed , Cell Movement/physiology , Cell Transformation, Viral , Cells, Cultured , Class I Phosphatidylinositol 3-Kinases , Embryo, Mammalian , Enzyme Activation , Fibroblasts/metabolism , Integrin beta1/chemistry , Integrins/metabolism , Isoenzymes/metabolism , Mice , Mice, Knockout , Phosphorylation , Signal Transduction/physiology , src-Family Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...