Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 117(6): 2770-2778, 2020 02 11.
Article in English | MEDLINE | ID: mdl-31988132

ABSTRACT

Organelle-specific nanocarriers (NCs) are highly sought after for delivering therapeutic agents into the cell nucleus. This necessitates nucleocytoplasmic transport (NCT) to bypass nuclear pore complexes (NPCs). However, little is known as to how comparably large NCs infiltrate this vital intracellular barrier to enter the nuclear interior. Here, we developed nuclear localization signal (NLS)-conjugated polymersome nanocarriers (NLS-NCs) and studied the NCT mechanism underlying their selective nuclear uptake. Detailed chemical, biophysical, and cellular analyses show that karyopherin receptors are required to authenticate, bind, and escort NLS-NCs through NPCs while Ran guanosine triphosphate (RanGTP) promotes their release from NPCs into the nuclear interior. Ultrastructural analysis by regressive staining transmission electron microscopy further resolves the NLS-NCs on transit in NPCs and inside the nucleus. By elucidating their ability to utilize NCT, these findings demonstrate the efficacy of polymersomes to deliver encapsulated payloads directly into cell nuclei.


Subject(s)
Cell Nucleus/metabolism , Nanoparticles/chemistry , Polymers/chemistry , Active Transport, Cell Nucleus , Biocompatible Materials/chemistry , Biocompatible Materials/metabolism , Cell Nucleus/genetics , Drug Delivery Systems , Guanosine Triphosphate/metabolism , HeLa Cells , Humans , Karyopherins , Nanoparticles/metabolism , Nuclear Localization Signals/chemistry , Nuclear Localization Signals/metabolism , Nuclear Pore/metabolism , Polymers/metabolism
2.
Chimia (Aarau) ; 70(6): 413-7, 2016.
Article in English | MEDLINE | ID: mdl-27363369

ABSTRACT

Artificial organelles, molecular factories and nanoreactors are membrane-bound systems envisaged to exhibit cell-like functionality. These constitute liposomes, polymersomes or hybrid lipo-polymersomes that display different membrane-spanning channels and/or enclose molecular modules. To achieve more complex functionality, an artificial organelle should ideally sustain a continuous influx of essential macromolecular modules (i.e. cargoes) and metabolites against an outflow of reaction products. This would benefit from the incorporation of selective nanopores as well as specific trafficking factors that facilitate cargo selectivity, translocation efficiency, and directionality. Towards this goal, we describe how proteinaceous cargoes are transported between the nucleus and cytoplasm by nuclear pore complexes and the biological trafficking machinery in living cells (i.e. nucleocytoplasmic transport). On this basis, we discuss how biomimetic control may be implemented to selectively import, compartmentalize and accumulate diverse macromolecular modules against concentration gradients in artificial organelles.


Subject(s)
Cell Nucleus/metabolism , Cytoplasm/metabolism , Biological Transport
3.
Dent Mater ; 32(4): e82-92, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26906431

ABSTRACT

OBJECTIVE: To investigate the application of a new type of multiarm polymer resins in the formulation of Glass Ionic Cements. METHODS: A series of star copolymers of t-butyl acrylate has been prepared by ATRP using a multiarm POSS-Br8 initiator. The resulting POSS-co-t-butyl acrylate star copolymers with eight arms were subsequently hydrolysed by trifluoroacetic acid to produce the corresponding POSS-co-acrylic acid star copolymers. All of the copolymers have been characterized by (1)H and (13)C NMR and FTIR spectroscopies and TGA/DSC. The as-prepared star copolymers were mixed with the glass powder from Fuji IX GP to produce the GIC samples for compression testing. RESULTS: The new type of multiarm polymer resins have been shown to have narrow molecular weight distributions and thermal properties of the acrylic acid copolymers are similar to that of poly(acrylic acid), with a two stage degradation profile involving transitions at ≈140°C and 250°C, corresponding to anhydride formation and loss of carbon dioxide, respectively. In aqueous solution the POSS-co-acrylic acid copolymers form aggregates with ≈33nm dimensions. When aqueous solutions of POSS-(PAA)8 are mixed with a glass powder, a rigid glass ionomer cement, GIC, is formed with a maximum compressive stress significantly greater than that for a linear PAA GIC of a comparable polymer molecular weight. SIGNIFICANCE: Therefore, these POSS-(PAA)8 copolymers demonstrate the potential for the application of well characterized star copolymers in the future development of new GICs as dental materials.


Subject(s)
Acrylates/chemistry , Glass Ionomer Cements/chemistry , Nanocomposites/chemistry , Acrylic Resins/chemistry , Compressive Strength , Glass Ionomer Cements/chemical synthesis , Hardness , Materials Testing , Polymers/chemistry , Powders/chemistry , Tensile Strength
SELECTION OF CITATIONS
SEARCH DETAIL
...