Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
J Microsc ; 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38353362

ABSTRACT

An approach for the crystallographic mapping of two-phase alloys on the nanoscale using a combination of scanned precession electron diffraction and open-source python libraries is introduced in this paper. This method is demonstrated using the example of a two-phase α/ß titanium alloy. The data were recorded using a direct electron detector to collect the patterns, and recently developed algorithms to perform automated indexing and analyse the crystallography from the results. Very high-quality mapping is achieved at a 3 nm step size. The results show the expected Burgers orientation relationships between the α laths and ß matrix, as well as the expected misorientations between α laths. A minor issue was found that one area was affected by 180° ambiguities in indexing occur due to this area being aligned too close to a zone axis of the α with twofold projection symmetry (not present in 3D) in the zero-order Laue Zone, and this should be avoided in data acquisition in the future. Nevertheless, this study demonstrates a good workflow for the analysis of nanocrystalline two- or multi-phase materials, which will be of widespread use in analysing two-phase titanium and other systems and how they evolve as a function of thermomechanical treatments.

2.
ACS Nano ; 17(22): 22326-22333, 2023 Nov 28.
Article in English | MEDLINE | ID: mdl-37956410

ABSTRACT

In recent years, there has been an increasing focus on 2D nongraphene materials that range from insulators to semiconductors to metals. As a single-elemental van der Waals semiconductor, tellurium (Te) has captivating anisotropic physical properties. Recent work demonstrated growth of ultrathin Te on WSe2 with the atomic chains of Te aligned with the armchair directions of the substrate using physical vapor deposition (PVD). In this system, a moiré superlattice is formed where micrometer-scale Te flakes sit on top of the continuous WSe2 film. Here, we determined the precise orientation of the Te flakes with respect to the substrate and detailed structure of the resulting moiré lattice by combining electron microscopy with image simulations. We directly visualized the moiré lattice using center of mass-differential phase contrast (CoM-DPC). We also investigated the local strain within the Te/WSe2 layered materials using scanning nanodiffraction techniques. There is a significant tensile strain at the edges of flakes along the direction perpendicular to the Te chain direction, which is an indication of the preferred orientation for the growth of Te on WSe2. In addition, we observed local strain relaxation regions within the Te film, specifically attributed to misfit dislocations, which we characterize as having a screw-like nature. The detailed structural analysis gives insight into the growth mechanisms and strain relaxation in this moiré heterostructure.

3.
Microsc Microanal ; 29(6): 1950-1960, 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-37851063

ABSTRACT

In a scanning transmission electron microscope (STEM), producing a high-resolution image generally requires an electron beam focused to the smallest point possible. However, the magnetic lenses used to focus the beam are unavoidably imperfect, introducing aberrations that limit resolution. Modern STEMs overcome this by using hardware aberration correctors comprised of many multipole elements, but these devices are complex, expensive, and can be difficult to tune. We demonstrate a design for an electrostatic phase plate that can act as an aberration corrector. The corrector is comprised of annular segments, each of which is an independent two-terminal device that can apply a constant or ramped phase shift to a portion of the electron beam. We show the improvement in image resolution using an electrostatic corrector. Engineering criteria impose that much of the beam within the probe-forming aperture be blocked by support bars, leading to large probe tails for the corrected probe that sample the specimen beyond the central lobe. We also show how this device can be used to create other STEM beam profiles such as vortex beams and probes with a high degree of phase diversity, which improve information transfer in ptychographic reconstructions.

4.
Microsc Microanal ; 29(Supplement_1): 2104, 2023 Jul 22.
Article in English | MEDLINE | ID: mdl-37612962
10.
Ultramicroscopy ; 250: 113732, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37087909

ABSTRACT

Nanobeam electron diffraction can probe local structural properties of complex crystalline materials including phase, orientation, tilt, strain, and polarization. Ideally, each diffraction pattern from a projected area of a few unit cells would produce a clear Bragg diffraction pattern, where the reciprocal lattice vectors can be measured from the spacing of the diffracted spots, and the spot intensities are equal to the square of the structure factor amplitudes. However, many samples are too thick for this simple interpretation of their diffraction patterns, as multiple scattering of the electron beam can produce a highly nonlinear relationship between the spot intensities and the underlying structure. Here, we develop a stacked Bloch wave method to model the diffracted intensities from thick samples with structure that varies along the electron beam. Our method reduces the large parameter space of electron scattering to just a few structural variables per probe position, making it fast enough to apply to very large fields of view. We apply our method to SrTiO3/PbTiO3/SrTiO3 multilayer samples, and successfully disentangle specimen tilt from the mean polarization of the PbTiO3 layers. We elucidate the structure of complex vortex topologies in the PbTiO3 layers, demonstrating the promise of our method to extract material properties from thick samples.

11.
Nat Commun ; 14(1): 988, 2023 Feb 22.
Article in English | MEDLINE | ID: mdl-36813779

ABSTRACT

Corrosion is a ubiquitous failure mode of materials. Often, the progression of localized corrosion is accompanied by the evolution of porosity in materials previously reported to be either three-dimensional or two-dimensional. However, using new tools and analysis techniques, we have realized that a more localized form of corrosion, which we call 1D wormhole corrosion, has previously been miscategorized in some situations. Using electron tomography, we show multiple examples of this 1D and percolating morphology. To understand the origin of this mechanism in a Ni-Cr alloy corroded by molten salt, we combined energy-filtered four-dimensional scanning transmission electron microscopy and ab initio density functional theory calculations to develop a vacancy mapping method with nanometer-resolution, identifying a remarkably high vacancy concentration in the diffusion-induced grain boundary migration zone, up to 100 times the equilibrium value at the melting point. Deciphering the origins of 1D corrosion is an important step towards designing structural materials with enhanced corrosion resistance.

12.
Nat Mater ; 22(2): 200-206, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36646794

ABSTRACT

Crystalline symmetries have played a central role in the identification and understanding of quantum materials. Here we investigate whether an amorphous analogue of a well known three-dimensional strong topological insulator has topological properties in the solid state. We show that amorphous Bi2Se3 thin films host a number of two-dimensional surface conduction channels. Our angle-resolved photoemission spectroscopy data are consistent with a dispersive two-dimensional surface state that crosses the bulk gap. Spin-resolved photoemission spectroscopy shows this state has an anti-symmetric spin texture, confirming the existence of spin-momentum locked surface states. We discuss these experimental results in light of theoretical photoemission spectra obtained with an amorphous topological insulator tight-binding model, contrasting it with alternative explanations. The discovery of spin-momentum locked surface states in amorphous materials opens a new avenue to characterize amorphous matter, and triggers the search for an overlooked subset of quantum materials outside of current classification schemes.

13.
iScience ; 25(3): 103882, 2022 Mar 18.
Article in English | MEDLINE | ID: mdl-35281728

ABSTRACT

Understanding and visualizing the heterogeneous structure of immiscible semicrystalline polymer systems is critical for optimizing their morphology and microstructure. We demonstrate a cryogenic 4D-STEM technique using a combination of amorphous radial profile mapping and correlative crystalline growth processing methods to map both the crystalline and amorphous phase distribution in an isotactic polypropylene (iPP)/ethylene-octene copolymer (EO) multilayer film with 5-nm step size. The resulting map shows a very sharp interface between the amorphous iPP and EO with no preferential crystalline structure near or at the interface, reinforcing the expected incompatibility and immiscibility of iPP and EO, which is a short-chain branched polyethylene. This technique provides a method for direct observation of interfacial structure in an unstained semicrystalline complex multicomponent system with a single cryogenic 4D-STEM dataset.

14.
Microsc Microanal ; : 1-14, 2022 Feb 09.
Article in English | MEDLINE | ID: mdl-35135651

ABSTRACT

Crystalline materials used in technological applications are often complex assemblies composed of multiple phases and differently oriented grains. Robust identification of the phases and orientation relationships from these samples is crucial, but the information extracted from the diffraction condition probed by an electron beam is often incomplete. We have developed an automated crystal orientation mapping (ACOM) procedure which uses a converged electron probe to collect diffraction patterns from multiple locations across a complex sample. We provide an algorithm to determine the orientation of each diffraction pattern based on a fast sparse correlation method. We demonstrate the speed and accuracy of our method by indexing diffraction patterns generated using both kinematical and dynamical simulations. We have also measured orientation maps from an experimental dataset consisting of a complex polycrystalline twisted helical AuAgPd nanowire. From these maps we identify twin planes between adjacent grains, which may be responsible for the twisted helical structure. All of our methods are made freely available as open source code, including tutorials which can be easily adapted to perform ACOM measurements on diffraction pattern datasets.

15.
Nano Lett ; 21(15): 6463-6470, 2021 08 11.
Article in English | MEDLINE | ID: mdl-34310158

ABSTRACT

A hierarchy of intramolecular and intermolecular interactions controls the properties of biomedical, photophysical, and novel energy materials. However, multiscale heterogeneities often obfuscate the relationship between microscopic structure and emergent function, and they are generally difficult to access with conventional optical and electron microscopy techniques. Here, we combine vibrational exciton nanoimaging in variable-temperature near-field optical microscopy (IR s-SNOM) with four-dimensional scanning transmission electron microscopy (4D-STEM), and vibrational exciton modeling based on density functional theory (DFT), to link local microscopic molecular interactions to macroscopic three-dimensional order. In the application to poly(tetrafluoroethylene) (PTFE), large spatio-spectral heterogeneities with C-F vibrational energy shifts ranging from sub-cm-1 to ≳25 cm-1 serve as a molecular ruler of the degree of local crystallinity and disorder. Spatio-spectral-structural correlations reveal a previously invisible degree of highly variable local disorder in molecular coupling as the possible missing link between nanoscale morphology and associated electronic, photonic, and other functional properties of molecular materials.


Subject(s)
Microscopy , Vibration
16.
Acc Chem Res ; 54(11): 2543-2551, 2021 Jun 01.
Article in English | MEDLINE | ID: mdl-33979131

ABSTRACT

ConspectusScanning electron nanobeam diffraction, or 4D-STEM (four-dimensional scanning transmission electron microscopy), is a flexible and powerful approach to elucidate structure from "soft" materials that are challenging to image in the transmission electron microscope because their structure is easily damaged by the electron beam. In a 4D-STEM experiment, a converged electron beam is scanned across the sample, and a pixelated camera records a diffraction pattern at each scan position. This four-dimensional data set can be mined for various analyses, producing maps of local crystal orientation, structural distortions, crystallinity, or different structural classes. Holding the sample at cryogenic temperatures minimizes diffusion of radicals and the resulting damage and disorder caused by the electron beam. The total fluence of incident electrons can easily be controlled during 4D-STEM experiments by careful use of the beam blanker, steering of the localized electron dose, and by minimizing the fluence in the convergent beam thus minimizing beam damage. This technique can be applied to both organic and inorganic materials that are known to be beam-sensitive; they can be highly crystalline, semicrystalline, mixed phase, or amorphous.One common example is the case for many organic materials that have a π-π stacking of polymer chains or rings on the order of 3.4-4.2 Å separation. If these chains or rings are aligned in some regions, they will produce distinct diffraction spots (as would other crystalline spacings in this range), though they may be weak or diffuse for disordered or weakly scattering materials. We can reconstruct the orientation of the π-π stacking, the degree of π-π stacking in the sample, and the domain size of the aligned regions. This Account summarizes illumination conditions and experimental parameters for 4D-STEM experiments with the goal of producing images of structural features for materials that are beam-sensitive. We will discuss experimental parameters including sample cooling, probe size and shape, fluence, and cameras. 4D-STEM has been applied to a variety of materials, not only as an advanced technique for model systems, but as a technique for the beginning microscopist to answer materials science questions. It is noteworthy that the experimental data acquisition does not require an aberration-corrected TEM but can be produced on a variety of instruments with the right attention to experimental parameters.

17.
Microsc Microanal ; 27(4): 712-743, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34018475

ABSTRACT

Scanning transmission electron microscopy (STEM) allows for imaging, diffraction, and spectroscopy of materials on length scales ranging from microns to atoms. By using a high-speed, direct electron detector, it is now possible to record a full two-dimensional (2D) image of the diffracted electron beam at each probe position, typically a 2D grid of probe positions. These 4D-STEM datasets are rich in information, including signatures of the local structure, orientation, deformation, electromagnetic fields, and other sample-dependent properties. However, extracting this information requires complex analysis pipelines that include data wrangling, calibration, analysis, and visualization, all while maintaining robustness against imaging distortions and artifacts. In this paper, we present py4DSTEM, an analysis toolkit for measuring material properties from 4D-STEM datasets, written in the Python language and released with an open-source license. We describe the algorithmic steps for dataset calibration and various 4D-STEM property measurements in detail and present results from several experimental datasets. We also implement a simple and universal file format appropriate for electron microscopy data in py4DSTEM, which uses the open-source HDF5 standard. We hope this tool will benefit the research community and help improve the standards for data and computational methods in electron microscopy, and we invite the community to contribute to this ongoing project.

18.
Nat Commun ; 12(1): 948, 2021 Feb 11.
Article in English | MEDLINE | ID: mdl-33574255

ABSTRACT

Due to their rarity and radioactive nature, comparatively little is known about the actinides, particularly those with atomic numbers higher than that of plutonium, and their compounds. In this work, we describe how transmission electron microscopy can provide comprehensive, safe, and cost-effective characterization using only single nanogram amounts of highly-radioactive, solid compounds. Chlorides of the rare elements berkelium and californium are dropcast and then converted in situ to oxides using the electron beam. The f-band occupancies are probed using electron energy loss spectroscopy and an unexpectedly weak spin-orbit-coupling is identified for berkelium. In contrast, californium follows a jj coupling scheme. These results have important implications for the chemistries of these elements and solidify the status of californium as a transitional element in the actinide series.

19.
Microsc Microanal ; 27(1): 129-139, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33303043

ABSTRACT

One of the primary uses for transmission electron microscopy (TEM) is to measure diffraction pattern images in order to determine a crystal structure and orientation. In nanobeam electron diffraction (NBED), we scan a moderately converged electron probe over the sample to acquire thousands or even millions of sequential diffraction images, a technique that is especially appropriate for polycrystalline samples. However, due to the large Ewald sphere of TEM, excitation of Bragg peaks can be extremely sensitive to sample tilt, varying strongly for even a few degrees of sample tilt for crystalline samples. In this paper, we present multibeam electron diffraction (MBED), where multiple probe-forming apertures are used to create multiple scanning transmission electron microscopy (STEM) probes, all of which interact with the sample simultaneously. We detail designs for MBED experiments, and a method for using a focused ion beam to produce MBED apertures. We show the efficacy of the MBED technique for crystalline orientation mapping using both simulations and proof-of-principle experiments. We also show how the angular information in MBED can be used to perform 3D tomographic reconstruction of samples without needing to tilt or scan the sample multiple times. Finally, we also discuss future opportunities for the MBED method.

20.
ACS Appl Mater Interfaces ; 12(36): 40078-40084, 2020 Sep 09.
Article in English | MEDLINE | ID: mdl-32805833

ABSTRACT

Targeted alpha therapy, where highly cytotoxic doses are delivered to tumor cells while sparing surrounding healthy tissue, has emerged as a promising treatment against cancer. Radionuclide conjugation with targeting vectors and dose confinement, however, are still limiting factors for the widespread application of this therapy. In the current study, we developed multifunctional silica nanoconstructs for targeted alpha therapy that show targeting capabilities against breast cancer cells, cytotoxic responses at therapeutic dosages, and enhanced clearance. The silica nanoparticles were conjugated to transferrin, which promoted particle accumulation in cancerous cells, and 3,4,3-LI(1,2-HOPO), a chelator with high selectivity and binding affinity for f-block elements. High cytotoxic effects were observed when the nanoparticles were loaded with 225Ac, a clinically relevant radioisotope. Lastly, in vivo studies in mice showed that the administration of radionuclides with nanoparticles enhanced their excretion and minimized their deposition in bones. These results highlight the potential of multifunctional silica nanoparticles as delivery systems for targeted alpha therapy and offer insight into design rules for the development of new nanotherapeutic agents.


Subject(s)
Actinium/pharmacology , Antineoplastic Agents/pharmacology , Breast Neoplasms/drug therapy , Nanoparticles/chemistry , Silicon Dioxide/pharmacology , Actinium/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/metabolism , Cell Line, Tumor , Cell Survival/drug effects , Drug Screening Assays, Antitumor , Female , Heterocyclic Compounds, 1-Ring/chemistry , Humans , Molecular Structure , Optical Imaging , Particle Size , Porosity , Pyridones/chemistry , Silicon Dioxide/chemical synthesis , Silicon Dioxide/chemistry , Surface Properties , Transferrin/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...