Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Anim Sci ; 99(12)2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34849985

ABSTRACT

This study used 18 calves (295 ± 29 kg) and 18 yearlings (521 ± 29 kg) fed whole, cracked, or steam-flaked corn (SFC) to evaluate nutrient digestion and energy balance across different types of processed corn and sizes of cattle. Cattle were fed a diet comprised of 75% corn (dry matter [DM]-basis) from whole, cracked, or SFC to 2.5-times maintenance energy requirements. Subsequently, cattle were placed in individual stanchions, and urine and feces were collected together with measures of gas production via indirect calorimetry. Data were analyzed using the MIXED procedure of SAS. There was no interaction between corn processing and cattle size (P ≥ 0.40). Time spent ruminating (min/d) and rumination rate (min/kg DM intake [DMI]) were not affected by corn processing or cattle size. The eating rate (min/kg DMI) was faster (P < 0.01) for yearlings compared with calves. Total tract starch digestion was greatest (P = 0.01) for cattle fed SFC (97.5%), intermediate in cattle fed cracked (92.4%), and least in cattle fed whole corn (89.5%). Dietary digestible energy and metabolizable energy (Mcal/kg DMI) were greater (P ≤ 0.05) for cattle fed SFC compared with cracked or whole. A greater proportion of digestible energy was lost to heat production (P = 0.01) in cattle fed whole corn compared with cracked and tended to be greater (P = 0.08) in cattle fed SFC than cracked. Conversion of digestible energy to metabolizable energy in this study was more closely related to a dynamic model used to estimate metabolizable energy of feeds to dairy cows than to a linear model used to predict metabolizable energy of feeds to beef cattle. If library estimates of net energy for maintenance are correct, then retained energy (Mcal/d) should have been similar between each type of processed corn; however, retained energy was greater (P < 0.01) for cattle fed cracked compared with whole corn and tended to be greater (P = 0.06) compared with SFC. Yet, observed amounts of net energy based on measures of retained energy were not different (P ≥ 0.60) between cracked and SFC. Nitrogen balance was not affected (P ≥ 0.30) by corn processing or cattle size, although cattle fed cracked had numerically greater (P ≤ 035) N retention. These data indicate that physical processing of corn provides greater net energy to cattle in comparison to whole corn.


Subject(s)
Animal Feed , Zea mays , Animal Feed/analysis , Animals , Cattle , Diet/veterinary , Digestion , Female , Nitrogen , Rumen
2.
J Anim Sci ; 99(7)2021 Jul 01.
Article in English | MEDLINE | ID: mdl-33951174

ABSTRACT

Providing supplements that enhance the efficiency of feed utilization can reduce methane (CH4) emissions from ruminants. Protein supplementation is widely used to increase intake and digestion of low-quality forages, yet little is known about its impact on CH4 emissions. British-cross steers (n = 23; initial body weight [BW] = 344 ± 33.9 kg) were used in a three-period crossover design to evaluate the effect of protein supplementation to beef cattle consuming low-quality forage on ruminal CH4, metabolic carbon dioxide (CO2) emissions, forage intake, and ruminal fermentation. Steers individually had ad libitum access to low-quality bluestem hay (4.6% crude protein [CP]) and were provided supplemental protein based on (dry matter basis): cottonseed meal (CSM; 0.29% of BW daily; 391 g/d CP), dried distillers grains with solubles (DDGS; 0.41% of BW daily 563 g/d CP), or none (CON). Urea was added to DDGS to match rumen degradable protein provided by CSM. Ruminal CH4 and metabolic CO2 fluxes were obtained 2.4 ± 0.4 times per steer daily using an automated open-circuit gas quantification system (GreenFeed emission monitoring system; C-Lock Inc., Rapid City, SD). Forage intake increased (P < 0.01) with protein supplementation; however, no difference in forage intake (P = 0.14) was observed between CSM and DDGS treatments. Flux of CO2 (g/d) was greater (P < 0.01) for steers fed CSM and DDGS than for steers fed CON. Steers supplemented with CSM had greater (P < 0.01) CH4 emissions (211 g/d) than DDGS (197 g/d) both of which were greater (P < 0.01) than CON (175 g/d). Methane emissions as a proportion of gross energy intake (GEI) were lowest (P < 0.01) for DDGS (7.66%), intermediate for CSM (8.46%) steers, and greatest for CON (10.53%). Steers fed DDGS also had the lowest (P < 0.01) ruminal acetate:propionate ratio (3.60), whereas CSM (4.89) was intermediate, and CON (5.64) steers were greatest. This study suggests that the common practice of supplementing protein to cattle consuming low-quality forage decreases greenhouse gas emissions per unit of GEI.


Subject(s)
Greenhouse Gases , Rumen , Animal Feed/analysis , Animals , Cattle , Diet/veterinary , Dietary Supplements , Digestion , Fermentation , Greenhouse Gases/metabolism , Rumen/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...