Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 14(9)2021 Apr 26.
Article in English | MEDLINE | ID: mdl-33926001

ABSTRACT

In this paper, a quick nanosecond laser micro structuring process was employed to change the surface wettability of Ti6Al4V alloy. The same laser structuring method was used throughout, but with varying input fluence. The laser processing parameters resulted in high surface melting. After laser treatment, four post-processing methods were used, namely high vacuum, low temperature annealing, storage in a polyethylene bag, and storage in ambient air. Subsequently, the water droplet contact angle was measured over a long time period of 55 days. The results show that the sample stored in ambient air remained hydrophilic. On the other hand, the sample post-processed in a vacuum chamber behaved hydrophobically with a contact angle of approximately 150°. Other post-processing did not lead to specific wettability behavior. After wettability testing, all samples were cleaned ultrasonically in distilled water. This cleaning process led to annulation of all obtained properties through post-processing. In summary, this paper shows that it is more important to study surface chemistry than topography in terms of effects on wettability. Moreover, surface wettability can be controlled by laser structuring, post-processing, and surface cleaning.

2.
Materials (Basel) ; 14(4)2021 Feb 17.
Article in English | MEDLINE | ID: mdl-33671460

ABSTRACT

The lifetime and properties of cutting tools and forming moulds can be prolonged and enhanced by the deposition of hard, thin coatings. After a certain period of usage, the coating will deteriorate. Any remaining coating must be removed prior to successful recoating. Laser stripping is a fast and environmentally friendly coating removal method. In this paper, we present laser removal of two types of coatings deposited on a 1.2379 tool steel substrate, namely, an AlTiN coating with high hardness and a DLC C coating with a small coefficient of friction (COF). A powerful nanosecond laser was employed to remove the coating from the substrate with high efficiency, along with suitable residual surface roughness. Measurements were taken of surface roughness, removed depth, and working time on a stripped area of 1 cm2. The samples were evaluated under a microscope, with a 3D profilometer, and by EDS chemical analysis. Successful removal of the coating was confirmed by optical analysis, but detailed chemical characterisation showed that about 30% of the coating element may remain on the surface. Moreover, a working time of less than 7.5 s per cm2 was obtained in this study. In addition, it was shown that the application of a second low energy, high frequency laser beam pass leads to remelting of the peaks of the material and reduced surface roughness.

SELECTION OF CITATIONS
SEARCH DETAIL
...