Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Life Sci ; 180: 42-50, 2017 Jul 01.
Article in English | MEDLINE | ID: mdl-28501483

ABSTRACT

Physiopathological conditions such as acute liver failure (ALF) induced by acetaminophen (APAP) can often impair the mitochondrial bioenergetics. Diphenyl diselenide [(PhSe)2] has been shown protects against APAP-induced ALF. The present study aimed to clarify the signaling mechanism involved in the protection of bioenergetics dysfunction associated with ALF-induced by APAP overdose. Mice received APAP (600mg/kg) or (PhSe)2 (15.6mg/kg) alone, or APAP+(PhSe)2, all the solutions were administered by the intraperitoneal (i.p.). Samples of liver, blood and liver mitochondria were collected at 2 and 4h after APAP administration. APAP-induced ALF was able to induce ALF by means of alteration on liver injury biomarkers, increased Nitrite and Nitrate levels and the impairment of oxidative phosphorylation capacity (OXPHOS). In parallel, APAP overdose promoted activation of nuclear factor erythroid 2-related factor 2 (Nrf2) and Heat shock protein 70 (HSP70) expression. (PhSe)2 was able to abolish the APAP-induced decline of OXPHOS and changes on the Nrf2-ARE pathway. In addition, (PhSe)2 elevated the levels of peroxisome proliferator-activated receptor-γ coactivator (PGC-1α), helping to restore the levels of nuclear respiratory factor 1 (NRF1) associated with mitochondrial biogenesis. In summary, the treatment with (PhSe)2 maintained mitochondrial function, promoted genes related to mitochondrial dynamic and demonstrating to play critical role in the modulation of cellular protective responses during ALF.


Subject(s)
Acetaminophen/toxicity , Benzene Derivatives/pharmacology , Chemical and Drug Induced Liver Injury/prevention & control , Energy Metabolism/drug effects , Liver Failure, Acute/prevention & control , Organoselenium Compounds/pharmacology , Acetaminophen/administration & dosage , Animals , Biomarkers/metabolism , Chemical and Drug Induced Liver Injury/etiology , Drug Overdose , HSP70 Heat-Shock Proteins/metabolism , Liver Failure, Acute/chemically induced , Male , Mice , Mitochondria, Liver/drug effects , Mitochondria, Liver/metabolism , NF-E2-Related Factor 2/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Time Factors
2.
J Neurotrauma ; 33(14): 1317-30, 2016 07 15.
Article in English | MEDLINE | ID: mdl-26651029

ABSTRACT

Throughout the world, traumatic brain injury (TBI) is one of the major causes of disability, which can include deficits in motor function and memory, as well as acquired epilepsy. Although some studies have shown the beneficial effects of physical exercise after TBI, the prophylactic effects are poorly understood. In the current study, we demonstrated that TBI induced by fluid percussion injury (FPI) in adult male Wistar rats caused early motor impairment (24 h), learning deficit (15 days), spontaneous epileptiform events (SEE), and hilar cell loss in the hippocampus (35 days) after TBI. The hippocampal alterations in the redox status, which were characterized by dichlorofluorescein diacetate oxidation and superoxide dismutase (SOD) activity inhibition, led to the impairment of protein function (Na(+), K(+)-adenosine triphosphatase [ATPase] activity inhibition) and glutamate uptake inhibition 24 h after neuronal injury. The molecular adaptations elicited by previous swim training protected against the glutamate uptake inhibition, oxidative stress, and inhibition of selected targets for free radicals (e.g., Na(+), K(+)-ATPase) 24 h after neuronal injury. Our data indicate that this protocol of exercise protected against FPI-induced motor impairment, learning deficits, and SEE. In addition, the enhancement of the hippocampal phosphorylated nuclear factor erythroid 2-related factor (P-Nrf2)/Nrf2, heat shock protein 70, and brain-derived neurotrophic factor immune content in the trained injured rats suggests that protein expression modulation associated with an antioxidant defense elicited by previous physical exercise can prevent toxicity induced by TBI, which is characterized by cell loss in the dentate gyrus hilus at 35 days after TBI. Therefore, this report suggests that previous physical exercise can decrease lesion progression in this model of brain damage.


Subject(s)
Behavior, Animal/physiology , Brain Injuries, Traumatic/metabolism , Cognitive Dysfunction/metabolism , Dentate Gyrus/metabolism , Epilepsy/metabolism , Movement Disorders/metabolism , Oxidation-Reduction , Physical Conditioning, Animal/physiology , Signal Transduction/physiology , Animals , Brain Injuries, Traumatic/complications , Cognitive Dysfunction/etiology , Cognitive Dysfunction/prevention & control , Dentate Gyrus/pathology , Disease Models, Animal , Epilepsy/etiology , Epilepsy/prevention & control , Learning/physiology , Male , Movement Disorders/etiology , Movement Disorders/prevention & control , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL