Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Publication year range
1.
Braz. arch. biol. technol ; Braz. arch. biol. technol;64: e21200102, 2021. tab, graf
Article in English | LILACS | ID: biblio-1278441

ABSTRACT

Abstract The synergism of food waste associated with swine manure can provide an increase in biogas production, besides promoting greater stability in the anaerobic co-digestion process. To verify this effect, co-digestion tests were performed in two reactors, one with agitation, and the other without agitation. In both systems, gasometers were used to measure biogas production in an experiment lasting two hydraulic retention times (HRT). On each feeding day, the temperatures of the ambient and of the effluent taken from the reactors were measured, and samples of the food waste and effluent were collected to perform analysis of pH, total solids (TS), volatile solids (VS), fixed solids (FS), volatile acidity (AV), and total alkalinity (TA). In addition, the chemical oxygen demand (COD) was determined every five days, and gas composition was determined at the beginning of the second HRT. As important results, in both reactors a decrease in pH was verified due to the weakening of the buffer effect of the medium. This was due to the low alkalinity found in the food waste, causing an increase in acidity in the contents of the reactors. The volume of biogas produced was higher in the reactor with agitation, which meant an increased efficiency of the process. Finally, a low methane content was verified through chromatographic analyses, indicating a reduction in the activity of the microorganisms present in the medium. Thus, it is concluded that agitation linked to anaerobic co-digestion of swine manure with food waste exerted a positive effect on biogas production.


Subject(s)
Biofuels , Garbage , Anaerobic Digestion , Activated Sludges
2.
Environ Technol ; 41(9): 1139-1150, 2020 Apr.
Article in English | MEDLINE | ID: mdl-30198817

ABSTRACT

This study evaluated the removal of silver nanoparticles (AgNPs), coated with different stabilizers, from aqueous media using the electrocoagulation technique. The AgNPs dispersions were synthesized by chemical reduction with silver nitrate as precursor, sodium borohydride as reducing agent and sodium carboxymethylcellulose (CMC), polyvinyl alcohol (PVA) and polyvinylpyrrolidone (PVP) as stabilizers with initial concentrations of 1 and 3% (w/v). The dispersions were named AgNPs-CMC1, AgNPs-CMC3, AgNPs-PVA1, AgNPs-PVA3, AgNPs-PVP1, and AgNPs-PVP3. Electrocoagulation treatments of AgNPs-PVA1, AgNPs-PVP1 and AgNPs-PVP3 dispersions resulted in total silver removals above 99.90% in 10 min. For the AgNPs-PVP3 dispersion 99.98% of removal was obtained in 20 min. After 15 min of electrolysis, The AgNPs-CMC1 and AgNPs-CMC3 dispersions showed a reduction in total silver concentration of 71.72 and 52.15%, respectively. Therefore, these results showed that the removal of AgNPs from the aqueous medium by electrocoagulation is possible, but their efficiency and viability depends on the nature, the molecular structure and the concentration of stabilizers. Furthermore, the toxicity analysis using the Vibrio fischeri bacteria demonstrated that only the dispersions stabilized with PVP became suitable for disposal after the electrocoagulation treatment.


Subject(s)
Metal Nanoparticles , Electrocoagulation , Polyvinyl Alcohol , Povidone , Silver
3.
Semina Ci. agr. ; 29(2): 441-448, 2008.
Article in Portuguese | VETINDEX | ID: vti-470551

ABSTRACT

The objective of this research was to evaluate the production of biomass of the aquatic macrophytes water hyacinth (Eichhornia crassipes) and egeria (Egeria densa) in three hydraulic detention times in a organic pisciculture effluent treatment system. The system was composed for 18 experimental tanks of 2.00 x 1.00 x 0.65m length, width and depth respectively, coated with polypropylene canvas. An entirely randomized 2 macrophytes x 3 hydraulic detention times (HDT) and 3 repetitions. The HDT used was 4, 8, and 12 hours. The biomass production was evaluated at the end of the experiment which was extended at 08/07 to 19/08/2006. The water hyacinth showed the best results of biomass production (P0.05). For egeria the treatment that presented the best production of biomass was reached which TDH of 12 hours, being of 0.10 kg.m-2, followed for the HDT of 8 and 4 hours, not differing between the HDT (P>0.05). One concludes that the water hyacinth produced higher biomass than egeria in all of the HDT evaluated.


O presente trabalho teve por o objetivo avaliar a produção de biomassa das macrófitas aquáticas aguapé (Eichhornia crassipes) e egeria (Egeria densa) em um sistema de tratamento de efluente de piscicultura orgânica, sob 3 condições de tempo de detenção hidráulica. O sistema foi composto por 18 tanques experimentais de 2,00 x 1,00 x 0,65 m de comprimento, largura e profundidade, respectivamente, revestidos com lona de polipropileno. O delineamento foi inteiramente casualizado, com 2 macrófitas, 3 tempos de detenção hidráulica (TDH) e 3 repetições. Os TDH utilizados foram de 4, 8 e 12 horas. O sistema foi operado de 08/07 a 19/08/2006. A produção de biomassa foi avaliada ao final do experimento. O aguapé apresentou os melhores resultados de produção de biomassa (P0,05). Para a egeria o tratamento que apresentou a melhor produção de biomassa foi no TDH de 12 horas, sendo de 0,10 kg.m- 2, seguido pelos TDH de 8 e 4 horas, não diferindo entre os TDH (P>0,05). Concluiu-se que o aguapé produziu mais biomassa que a egeria em todos os TDH avaliados.

4.
Semina ciênc. agrar ; 29(2): 441-448, 2008.
Article in Portuguese | LILACS-Express | VETINDEX | ID: biblio-1498367

ABSTRACT

The objective of this research was to evaluate the production of biomass of the aquatic macrophytes water hyacinth (Eichhornia crassipes) and egeria (Egeria densa) in three hydraulic detention times in a organic pisciculture effluent treatment system. The system was composed for 18 experimental tanks of 2.00 x 1.00 x 0.65m length, width and depth respectively, coated with polypropylene canvas. An entirely randomized 2 macrophytes x 3 hydraulic detention times (HDT) and 3 repetitions. The HDT used was 4, 8, and 12 hours. The biomass production was evaluated at the end of the experiment which was extended at 08/07 to 19/08/2006. The water hyacinth showed the best results of biomass production (P0.05). For egeria the treatment that presented the best production of biomass was reached which TDH of 12 hours, being of 0.10 kg.m-2, followed for the HDT of 8 and 4 hours, not differing between the HDT (P>0.05). One concludes that the water hyacinth produced higher biomass than egeria in all of the HDT evaluated.


O presente trabalho teve por o objetivo avaliar a produção de biomassa das macrófitas aquáticas aguapé (Eichhornia crassipes) e egeria (Egeria densa) em um sistema de tratamento de efluente de piscicultura orgânica, sob 3 condições de tempo de detenção hidráulica. O sistema foi composto por 18 tanques experimentais de 2,00 x 1,00 x 0,65 m de comprimento, largura e profundidade, respectivamente, revestidos com lona de polipropileno. O delineamento foi inteiramente casualizado, com 2 macrófitas, 3 tempos de detenção hidráulica (TDH) e 3 repetições. Os TDH utilizados foram de 4, 8 e 12 horas. O sistema foi operado de 08/07 a 19/08/2006. A produção de biomassa foi avaliada ao final do experimento. O aguapé apresentou os melhores resultados de produção de biomassa (P0,05). Para a egeria o tratamento que apresentou a melhor produção de biomassa foi no TDH de 12 horas, sendo de 0,10 kg.m- 2, seguido pelos TDH de 8 e 4 horas, não diferindo entre os TDH (P>0,05). Concluiu-se que o aguapé produziu mais biomassa que a egeria em todos os TDH avaliados.

5.
Braz. arch. biol. technol ; Braz. arch. biol. technol;48(spe): 191-196, June 2005.
Article in English | LILACS | ID: lil-415474

ABSTRACT

The present work was performed using the common onion (Allium cepa L.) as a bioindicator of toxicity of heavy metals in river water. The test waters were collected at two sampling sites: at the beginning and the end of the Toledo River. The bulbs of A. cepa L. were grown in test water with nine concentration levels of copper, zinc and lead from 0.1 to 50 ppm. In the laboratory, the influence of these test liquids on the root growth was examined during five days. For test liquids containing below 0.03-ppm dissolved Cu the root growth was reduced by 40 percent However, the same reduction occurred for 1-ppm dissolved Zn. For dissolved Pb, results reveal toxicity above 0.1 and 0.6 ppm at the beginning and the end of the Toledo river water, respectively.

SELECTION OF CITATIONS
SEARCH DETAIL