Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
medRxiv ; 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38559205

ABSTRACT

Alzheimer's disease (AD) is the most common form of age-related dementia, leading to a decline in memory, reasoning, and social skills. While numerous studies have investigated the genetic risk factors associated with AD, less attention has been given to identifying a brain imaging-based measure of AD risk. This study introduces a novel approach to assess mild cognitive impairment MCI, as a stage before AD, risk using neuroimaging data, referred to as a brain-wide risk score (BRS), which incorporates multimodal brain imaging. To begin, we first categorized participants from the Open Access Series of Imaging Studies (OASIS)-3 cohort into two groups: controls (CN) and individuals with MCI. Next, we computed structure and functional imaging features from all the OASIS data as well as all the UK Biobank data. For resting functional magnetic resonance imaging (fMRI) data, we computed functional network connectivity (FNC) matrices using fully automated spatially constrained independent component analysis. For structural MRI data we computed gray matter (GM) segmentation maps. We then evaluated the similarity between each participant's neuroimaging features from the UK Biobank and the difference in the average of those features between CN individuals and those with MCI, which we refer to as the brain-wide risk score (BRS). Both GM and FNC features were utilized in determining the BRS. We first evaluated the differences in the distribution of the BRS for CN vs MCI within the OASIS-3 (using OASIS-3 as the reference group). Next, we evaluated the BRS in the Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort (using OASIS-3 as the reference group), showing that the BRS can differentiate MCI from CN in an independent data set. Subsequently, using the sMRI BRS, we identified 10 distinct subgroups and similarly, we identified another set of 10 subgroups using the FNC BRS. For sMRI and FNC we observed results that mutually validate each other, with certain aspects being complementary. For the unimodal analysis, sMRI provides greater differentiation between MCI and CN individuals than the fMRI data, consistent with prior work. Additionally, by utilizing a multimodal BRS approach, which combines both GM and FNC assessments, we identified two groups of subjects using the multimodal BRS scores. One group exhibits high MCI risk with both negative GM and FNC BRS, while the other shows low MCI risk with both positive GM and FNC BRS. Moreover, in the UKBB we have 46 participants diagnosed with AD showed FNC and GM patterns similar to those in high-risk groups, defined in both unimodal and multimodal BRS. Finally, to ensure the reproducibility of our findings, we conducted a validation analysis using the ADNI as an additional reference dataset and repeated the above analysis. The results were consistently replicated across different reference groups, highlighting the potential of FNC and sMRI-based BRS in early Alzheimer's detection.

2.
Article in English | MEDLINE | ID: mdl-38083709

ABSTRACT

Alzheimer's disease (AD) is the most prevalent age-related dementia and causes memory, reasoning, and social skills to deteriorate. In recent years many studies have explored the genetic risk of AD, but less work has been done to identify a brain imaging-based AD risk measure. The current study proposed a new neuroimaging-based measure of AD risk, called brain-wide risk score or BRS, based on multimodal brain features. Using the proposed AD BRS, we identified four AD biotypes from a large sample of subjects (N>37,000) from the UK Biobank dataset: one with high AD BRS, one with low AD BRS, and two with moderate AD BRS. Next, we further showed that the cognitive scores of the biotype with lower AD BRS are significantly better than those of other biotypes.


Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/diagnostic imaging , Neuroimaging , Brain/diagnostic imaging , Risk Factors , Disease Progression
3.
Neuroimage Clin ; 37: 103363, 2023.
Article in English | MEDLINE | ID: mdl-36871405

ABSTRACT

Apolipoprotein E (APOE) polymorphic alleles are genetic factors associated with Alzheimer's disease (AD) risk. Although previous studies have explored the link between AD genetic risk and static functional network connectivity (sFNC), to the best of our knowledge, no previous studies have evaluated the association between dynamic FNC (dFNC) and AD genetic risk. Here, we examined the link between sFNC, dFNC, and AD genetic risk with a data-driven approach. We used rs-fMRI, demographic, and APOE data from cognitively normal individuals (N = 886) between 42 and 95 years of age (mean = 70 years). We separated individuals into low, moderate, and high-risk groups. Using Pearson correlation, we calculated sFNC across seven brain networks. We also calculated dFNC with a sliding window and Pearson correlation. The dFNC windows were partitioned into three distinct states with k-means clustering. Next, we calculated the proportion of time each subject spent in each state, called occupancy rate or OCR and frequency of visits. We compared both sFNC and dFNC features across individuals with different genetic risks and found that both sFNC and dFNC are related to AD genetic risk. We found that higher AD risk reduces within-visual sensory network (VSN) sFNC and that individuals with higher AD risk spend more time in a state with lower within-VSN dFNC. We also found that AD genetic risk affects whole-brain sFNC and dFNC in women but not men. In conclusion, we presented novel insights into the links between sFNC, dFNC, and AD genetic risk.


Subject(s)
Alzheimer Disease , Aged , Female , Humans , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/genetics , Brain/diagnostic imaging , Brain Mapping , Magnetic Resonance Imaging , Male
4.
Brain Connect ; 13(6): 334-343, 2023 08.
Article in English | MEDLINE | ID: mdl-34102870

ABSTRACT

Background: Alzheimer's disease (AD) is the most common age-related dementia that promotes a decline in memory, thinking, and social skills. The initial stages of dementia can be associated with mild symptoms, and symptom progression to a more severe state is heterogeneous across patients. Recent work has demonstrated the potential for functional network mapping to assist in the prediction of symptomatic progression. However, this work has primarily used static functional connectivity (sFC) from resting-state functional magnetic resonance imaging. Recently, dynamic functional connectivity (dFC) has been recognized as a powerful advance in functional connectivity methodology to differentiate brain network dynamics between healthy and diseased populations. Methods: Group independent component analysis was applied to extract 17 components within the cognitive control network (CCN) from 1385 individuals across varying stages of AD symptomology. We estimated dFC among 17 components within the CCN, followed by clustering the dFCs into 3 recurring brain states, and then estimated a hidden Markov model and the occupancy rate for each subject. Then, we investigated the link between CCN dFC features and AD progression. Also, we investigated the link between sFC and AD progression and compared its results with dFC results. Results: Progression of AD symptoms was associated with increases in connectivity within the middle frontal gyrus. Also, the very mild AD (vmAD) showed less connectivity within the inferior parietal lobule (in both sFC and dFC) and between this region and the rest of CCN (in dFC analysis). Also, we found that within-middle frontal gyrus connectivity increases with AD progression in both sFC and dFC results. Finally, comparing with vmAD, we found that the normal brain spends significantly more time in a state with lower within-middle frontal gyrus connectivity and higher connectivity between the hippocampus and the rest of CCN, highlighting the importance of assessing the dynamics of brain connectivity in this disease. Conclusion: Our results suggest that AD progress not only alters the CCN connectivity strength but also changes the temporal properties in this brain network. This suggests the temporal and spatial pattern of CCN as a biomarker that differentiates different stages of AD.


Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/diagnostic imaging , Brain/diagnostic imaging , Magnetic Resonance Imaging/methods , Brain Mapping/methods , Cognition
5.
Dev Cogn Neurosci ; 56: 101129, 2022 08.
Article in English | MEDLINE | ID: mdl-35820341

ABSTRACT

Posterior cerebellar lobules are active during executive function (EF) tasks and are functionally connected to EF-associated cortical networks such as the fronto-parietal network (FPN) and cingulo-opercular network (CON). Despite evidence that EF and cerebello-cortical connectivity develop on a similar time scale, developmental relationships between EFs and cerebello-cortical connectivity have not been directly investigated. We therefore examined relationships between cerebello-cortical connectivity and EF performance in a typically developing sample ages 8 - 21. Resting-state functional connectivity between posterior cerebellum and FPN (middle frontal gyrus, posterior parietal lobules)/CON (anterior cingulate, insula) was computed using independent components analysis. Using conditional process models, we tested the hypothesis that cerebellum - PFC connectivity would mediate the relationship between FPN/CON and EF, and that cerebello-cortical connectivity, and connectivity - EF relationships, would become stronger with increasing age. Cerebellum - CON connectivity strengthened with age, but a relationship between cerebellum - anterior cingulate cortex (ACC) connectivity and attention efficiency was significant only in younger children. Results suggest that during childhood, the posterior cerebellum and ACC may support sustained and executive attention, though age has a stronger effect on EF. These findings may help to guide further studies of executive dysfunction in neurodevelopmental disorders.


Subject(s)
Brain Mapping , Magnetic Resonance Imaging , Adolescent , Adult , Attention , Brain Mapping/methods , Cerebellum , Child , Executive Function , Humans , Magnetic Resonance Imaging/methods , Neural Pathways , Young Adult
6.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 1640-1643, 2021 11.
Article in English | MEDLINE | ID: mdl-34891600

ABSTRACT

In this study, resting-state functional magnetic resonance imaging (rs-fMRI) data of 125 schizophrenia (SZ) subjects were analyzed. Based on SZ demographic information and cognitive scores and using an unsupervised clustering method, we identified subgroups of patients and compared DMN dynamic functional connectivity (dFC) between the groups. We captured seven independent subnodes, including anterior cingulate cortex (ACC), posterior cingulate cortex (PCC), and precuneus (PCu), in the DMN by applying group independent component analysis (group-ICA) and estimated dFC between component time courses using a sliding window approach. By using k-means clustering, we separated the dFCs into three reoccurring brain states. Using the statistical method, we compared the state-specific DMN connectivity pattern between two SZ subgroups. In addition, we used a transition probability matrix of a hidden Markov model (HMM) and occupancy rate (OCR) of each state between two SZ subgroups. We found SZ subjects with higher positive and negative syndrome scale (PNASS) showed lower within ACC and lower ACC and PCC connectivity (or ACC/PCC). In addition, we found the transition from state1 to same state is significantly different between two groups, while this result was not significant after multiple comparison tests.


Subject(s)
Schizophrenia , Brain/diagnostic imaging , Brain Mapping , Default Mode Network , Humans , Magnetic Resonance Imaging , Schizophrenia/diagnostic imaging
7.
Front Neurosci ; 15: 708387, 2021.
Article in English | MEDLINE | ID: mdl-34720851

ABSTRACT

Introduction: Individuals with schizophrenia have consistent gray matter reduction throughout the cortex when compared to healthy individuals. However, the reduction patterns vary based on the quantity (concentration or volume) utilized by study. The objective of this study was to identify commonalities between gray matter concentration and gray matter volume effects in schizophrenia. Methods: We performed both univariate and multivariate analyses of case/control effects on 145 gray matter images from 66 participants with schizophrenia and 79 healthy controls, and processed to compare the concentration and volume estimates. Results: Diagnosis effects in the univariate analysis showed similar areas of volume and concentration reductions in the insula, occipitotemporal gyrus, temporopolar area, and fusiform gyrus. In the multivariate analysis, healthy controls had greater gray matter volume and concentration additionally in the superior temporal gyrus, prefrontal cortex, cerebellum, calcarine, and thalamus. In the univariate analyses there was moderate overlap between gray matter concentration and volume across the entire cortex (r = 0.56, p = 0.02). The multivariate analyses revealed only low overlap across most brain patterns, with the largest correlation (r = 0.37) found in the cerebellum and vermis. Conclusions: Individuals with schizophrenia showed reduced gray matter volume and concentration in previously identified areas of the prefrontal cortex, cerebellum, and thalamus. However, there were only moderate correlations across the cortex when examining the different gray matter quantities. Although these two quantities are related, concentration and volume do not show identical results, and therefore, should not be used interchangeably in the literature.

8.
Front Neural Circuits ; 15: 649417, 2021.
Article in English | MEDLINE | ID: mdl-33815070

ABSTRACT

Background: Schizophrenia affects around 1% of the global population. Functional connectivity extracted from resting-state functional magnetic resonance imaging (rs-fMRI) has previously been used to study schizophrenia and has great potential to provide novel insights into the disorder. Some studies have shown abnormal functional connectivity in the default mode network (DMN) of individuals with schizophrenia, and more recent studies have shown abnormal dynamic functional connectivity (dFC) in individuals with schizophrenia. However, DMN dFC and the link between abnormal DMN dFC and symptom severity have not been well-characterized. Method: Resting-state fMRI data from subjects with schizophrenia (SZ) and healthy controls (HC) across two datasets were analyzed independently. We captured seven maximally independent subnodes in the DMN by applying group independent component analysis and estimated dFC between subnode time courses using a sliding window approach. A clustering method separated the dFCs into five reoccurring brain states. A feature selection method modeled the difference between SZs and HCs using the state-specific FC features. Finally, we used the transition probability of a hidden Markov model to characterize the link between symptom severity and dFC in SZ subjects. Results: We found decreases in the connectivity of the anterior cingulate cortex (ACC) and increases in the connectivity between the precuneus (PCu) and the posterior cingulate cortex (PCC) (i.e., PCu/PCC) of SZ subjects. In SZ, the transition probability from a state with weaker PCu/PCC and stronger ACC connectivity to a state with stronger PCu/PCC and weaker ACC connectivity increased with symptom severity. Conclusions: To our knowledge, this was the first study to investigate DMN dFC and its link to schizophrenia symptom severity. We identified reproducible neural states in a data-driven manner and demonstrated that the strength of connectivity within those states differed between SZs and HCs. Additionally, we identified a relationship between SZ symptom severity and the dynamics of DMN functional connectivity. We validated our results across two datasets. These results support the potential of dFC for use as a biomarker of schizophrenia and shed new light upon the relationship between schizophrenia and DMN dynamics.


Subject(s)
Schizophrenia , Brain/diagnostic imaging , Brain Mapping , Default Mode Network , Humans , Magnetic Resonance Imaging , Neural Pathways/diagnostic imaging , Schizophrenia/diagnostic imaging
9.
Brain Connect ; 11(10): 838-849, 2021 12.
Article in English | MEDLINE | ID: mdl-33514278

ABSTRACT

Background: Major depressive disorder (MDD) is a severe mental illness marked by a continuous sense of sadness and a loss of interest. The default mode network (DMN) is a group of brain areas that are more active during rest and deactivate when engaged in task-oriented activities. The DMN of MDD has been found to have aberrant static functional network connectivity (FNC) in recent studies. In this work, we extend previous findings by evaluating dynamic functional network connectivity (dFNC) within the DMN subnodes in MDD. Methods: We analyzed resting-state functional magnetic resonance imaging data of 262 patients with MDD and 277 healthy controls (HCs). We estimated dFNCs for seven subnodes of the DMN, including the anterior cingulate cortex (ACC), posterior cingulate cortex (PCC), and precuneus (PCu), using a sliding window approach, and then clustered the dFNCs into five brain states. Classification of MDD and HC subjects based on state-specific FC was performed using a logistic regression classifier. Transition probabilities between dFNC states were used to identify relationships between symptom severity and dFNC data in MDD patients. Results: By comparing state-specific FNC between HC and MDD, a disrupted connectivity pattern was observed within the DMN. In more detail, we found that the connectivity of ACC is stronger, and the connectivity between PCu and PCC is weaker in individuals with MDD than in those of HC subjects. In addition, MDD showed a higher probability of transitioning from a state with weaker ACC connectivity to a state with stronger ACC connectivity, and this abnormality is associated with symptom severity. This is the first research to look at the dFC of the DMN in MDD with a large sample size. It provides novel evidence of abnormal time-varying DMN configuration in MDD and offers links to symptom severity in MDD subjects. Impact Statement This study is the first attempt that explored the temporal change on default mode network (DMN) connectivity in a relatively large cohort of patients with major depressive disorder (MDD). We also introduced a new hypothesis that explains the inconsistency in DMN functional network connectivity (FNC) comparison between MDD and healthy control based on static FNC in the previous literature. Additionally, our findings suggest that within anterior cingulate cortex connectivity and the connectivity between the precuneus and posterior cingulate cortex are the potential biomarkers for the future intervention of MDD.


Subject(s)
Depressive Disorder, Major , Brain/diagnostic imaging , Brain Mapping , Default Mode Network , Depressive Disorder, Major/diagnostic imaging , Humans , Magnetic Resonance Imaging
10.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 1493-1496, 2020 07.
Article in English | MEDLINE | ID: mdl-33018274

ABSTRACT

Major depressive disorder (MDD) is a common and serious mental disorder characterized by a persistent negative feeling and tremendous sadness. In recent decades, several studies used functional network connectivity (FNC), estimated from resting state functional magnetic resonance imaging (fMRI), to investigate the biological signature of MDD. However, the majority of them have ignored the temporal change of brain interaction by focusing on static FNC (sFNC). Dynamic functional network connectivity (dFNC) that explores temporal patterns of functional connectivity (FC) might provide additional information to its static counterpart. In the current study, by applying k-means clustering on dFNC of MDD and healthy subjects (HCs), we estimated 5 different states. Next, we use the hidden Markov model as a potential biomarker to differentiate the dFNC pattern of MDD patients from HCs. Comparing MDD and HC subjects' hidden Markov model (HMM) features, we have highlighted the role of transition probabilities between states as potential biomarkers and identified that transition probability from a lightly- connected state to highly connected one reduces as symptom severity increases in MDD subjects.Index Terms- Major depressive disorder, Dynamic functional network connectivity, Machine learning, Resting- state functional magnetic resonance imaging, Hidden Markov model.


Subject(s)
Depressive Disorder, Major , Brain/diagnostic imaging , Brain Mapping , Humans , Magnetic Resonance Imaging , Probability
11.
Front Neural Circuits ; 14: 593263, 2020.
Article in English | MEDLINE | ID: mdl-33551754

ABSTRACT

Background: Alzheimer's disease (AD) is the most common age-related problem and progresses in different stages, including mild cognitive impairment (early stage), mild dementia (middle-stage), and severe dementia (late-stage). Recent studies showed changes in functional network connectivity obtained from resting-state functional magnetic resonance imaging (rs-fMRI) during the transition from healthy aging to AD. By assuming that the brain interaction is static during the scanning time, most prior studies are focused on static functional or functional network connectivity (sFNC). Dynamic functional network connectivity (dFNC) explores temporal patterns of functional connectivity and provides additional information to its static counterpart. Method: We used longitudinal rs-fMRI from 1385 scans (from 910 subjects) at different stages of AD (from normal to very mild AD or vmAD). We used group-independent component analysis (group-ICA) and extracted 53 maximally independent components (ICs) for the whole brain. Next, we used a sliding-window approach to estimate dFNC from the extracted 53 ICs, then group them into 3 different brain states using a clustering method. Then, we estimated a hidden Markov model (HMM) and the occupancy rate (OCR) for each subject. Finally, we investigated the link between the clinical rate of each subject with state-specific FNC, OCR, and HMM. Results: All states showed significant disruption during progression normal brain to vmAD one. Specifically, we found that subcortical network, auditory network, visual network, sensorimotor network, and cerebellar network connectivity decrease in vmAD compared with those of a healthy brain. We also found reorganized patterns (i.e., both increases and decreases) in the cognitive control network and default mode network connectivity by progression from normal to mild dementia. Similarly, we found a reorganized pattern of between-network connectivity when the brain transits from normal to mild dementia. However, the connectivity between visual and sensorimotor network connectivity decreases in vmAD compared with that of a healthy brain. Finally, we found a normal brain spends more time in a state with higher connectivity between visual and sensorimotor networks. Conclusion: Our results showed the temporal and spatial pattern of whole-brain FNC differentiates AD form healthy control and suggested substantial disruptions across multiple dynamic states. In more detail, our results suggested that the sensory network is affected more than other brain network, and default mode network is one of the last brain networks get affected by AD In addition, abnormal patterns of whole-brain dFNC were identified in the early stage of AD, and some abnormalities were correlated with the clinical score.


Subject(s)
Alzheimer Disease/physiopathology , Brain/physiopathology , Dementia/physiopathology , Nerve Net/physiopathology , Aged , Alzheimer Disease/psychology , Brain Mapping/methods , Female , Humans , Longitudinal Studies , Magnetic Resonance Imaging/methods , Male , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL
...