Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Small ; : e2400849, 2024 Apr 21.
Article in English | MEDLINE | ID: mdl-38644168

ABSTRACT

Liquid organic hydrogen carrier is a promising option for the transport and storage of hydrogen as a clean energy source. This study examines the stability and behavior of organic drops immobilized on a substrate during an interfacial hydrogen-evolution reaction (HER) at the drop surface and its surrounding aqueous solution. Hydrogen microbubbles form within the drop and rise to the drop apex. The growth rate of the hydrogen in-drop bubble increases with the concentration of the reactant in the surrounding medium. The drop remains stable till the buoyancy acting on the in-drop bubble is large enough to overcome the capillary force and the external viscous drag. The bubble spontaneously rises and carries a portion drop liquid to the solution surface. These spontaneous rising in-drop bubbles are detected in measurements using a high-precision sensor placed on the upper surface of the aqueous solution, reversing the settling phase from phase separation in the reactive emulsion. The finding from this work provides new insights into the behaviors of drops and bubbles in many interfacial gas evolution reactions in clean technologies.

2.
ACS Nano ; 18(5): 4443-4455, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38193813

ABSTRACT

The management of myocardial ischemia/reperfusion (I/R) damage in the context of reperfusion treatment remains a significant hurdle in the field of cardiovascular disorders. The injured lesions exhibit distinctive features, including abnormal accumulation of necrotic cells and subsequent inflammatory response, which further exacerbates the impairment of cardiac function. Here, we report genetically engineered hybrid nanovesicles (hNVs), which contain cell-derived nanovesicles overexpressing high-affinity SIRPα variants (SαV-NVs), exosomes (EXOs) derived from human mesenchymal stem cells (MSCs), and platelet-derived nanovesicles (PLT-NVs), to facilitate the necrotic cell clearance and inhibit the inflammatory responses. Mechanistically, the presence of SαV-NVs suppresses the CD47-SIRPα interaction, leading to the promotion of the macrophage phagocytosis of dead cells, while the component of EXOs aids in alleviating inflammatory responses. Moreover, the PLT-NVs endow hNVs with the capacity to evade immune surveillance and selectively target the infarcted area. In I/R mouse models, coadministration of SαV-NVs and EXOs showed a notable synergistic effect, leading to a significant enhancement in the left ventricular ejection fraction (LVEF) on day 21. These findings highlight that the hNVs possess the ability to alleviate myocardial inflammation, minimize infarct size, and improve cardiac function in I/R models, offering a simple, safe, and robust strategy in boosting cardiac repair after I/R.


Subject(s)
Exosomes , Ventricular Function, Left , Animals , Mice , Humans , Stroke Volume , Ischemia , Reperfusion
3.
Small ; 20(3): e2303177, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37726248

ABSTRACT

According to Archimedes' principle, a submerged object with a density lower than that of aqueous acid solution is more buoyant than a smaller one. In this work, a remarkable phenomenon is reported wherein a dissolving drop on a substrate rises in the water only after it has diminished to a much smaller size, though the buoyancy is smaller. The drop consisting of a polymer solution reacts with the acid in the surrounding, yielding a water-soluble product. During drop dissolution, water-rich microdroplets form within the drop, merging with the external aqueous phase along the drop-substrate boundary. Two key elements determine the drop rise dynamics. The first is the stick-jump behavior during drop dissolution. The second is that buoyancy exerts a strong enough force on the drop at an Archimedean number greater than 1, while the stick-jump behavior is ongoing. The time of the drop rise is controlled by the initial size and the reaction rate of the drop. This novel mechanism for programmable drop rise may be beneficial for many future applications, such as microfluidics, microrobotics, and device engineering where the spontaneous drop detachment may be utilized to trigger a cascade of events in a dense medium.

4.
Langmuir ; 39(41): 14737-14747, 2023 Oct 17.
Article in English | MEDLINE | ID: mdl-37794656

ABSTRACT

Solar interfacial evaporation (SIE) by leveraging photothermal conversion could be a clean and sustainable solution to the scarcity of fresh water, decontamination of wastewater, and steam sterilization. However, the process of salt crystallization on photothermal materials used in SIE, especially from saltwater evaporation, has not been completely understood. We report the temporal and spatial evolution of salt crystals on the photothermal layer during SIE. By using a typical oil lamp evaporator, we found that salt crystallization always initiates from the edge of the evaporation surface of the photothermal layer due to the local fast flux of the vapor to the surroundings. Interestingly, the salt crystals exhibit either compact or loose morphology, depending on the location and evaporation duration. By employing a suite of complementary analytical techniques of Raman and infrared spectroscopy and temperature mapping, we followed the evolution and spatial distribution of salt crystals, interfacial water, and surface temperature during evaporation. Our results suggested that the compact crystal structure may emerge from the recrystallization of salt in an initially porous structure, driven by continuous water evaporation from the porous and loose crystals. The holistic view provided in this study may lay the foundation for effective strategies for mitigation of the negative impact of salt crystallization in solar evaporation.

5.
Anal Chim Acta ; 1274: 341529, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37455069

ABSTRACT

Preconcentration of the target compound is a critical step that ensures the accuracy of the subsequent chemical analysis. In this work, we present a straightforward yet effective liquid-liquid extraction approach based on surface nanodroplets (i.e., nanoextraction) for offline analysis of highly diluted sample solutions. The extraction and sample collection were streamlined in a 3-m microcapillary tube. The concentration of the target analyte in surface nanodroplets was significantly increased compared to the concentration in the sample solution, reaching several orders of magnitude. A limit of detection (LOD) was decreased by a factor of ∼103 for an organic model compound in Fourier-transform infrared spectroscopy (FTIR) measurements and ∼105 for a model fluorescent dye in fluorescence detection. The quantitative analysis of the organic compound was also achieved in a wide concentration region from 10-3 M to 10-4 M. The total volume of surface nanodroplets can be manipulated to further enhance extraction efficiency, according to the principle that governs droplet formation by solvent exchange. Additionally, our method exhibited significantly improved sensitivity compared to traditional dispersive liquid-liquid microextraction (DLLME). The LOD of the fluorescent dye and the organic model compound obtained with DLLME was 3 orders of magnitude and 20 times higher than the LOD achieved through nanoextraction approach. The nanoextraction developed in this work can be applied to preconcentrate multi-compounds from river water samples, without clear interference from each other. This can further extend its applicability for the detection and quantification of target analytes in complex aqueous samples by common analytical instruments.

6.
Soft Matter ; 19(2): 295-305, 2023 Jan 04.
Article in English | MEDLINE | ID: mdl-36520098

ABSTRACT

Switchable hydrophilicity solvents (SHSs) are solvents defined by their ability to switch from their hydrophobic form to a hydrophilic form when brought into contact with an acidic trigger such as CO2. As a consequence, SHSs qualify as promising alternatives to volatile organic compounds during industrial solvent extraction processes, as greener and inexpensive methods can be applied to separate and recover SHSs. Furthermore, because of their less volatile nature, SHSs are less flammable and so increase the safety of a larger scale extraction process. In this work, we study the dynamics and in-drop phase separation during the dissolution process of a drop composed of a SHS and a polymer, triggered by an acid in the surrounding aqueous environment. From 70 different experimental conditions, we found a scaling relationship between the drop dissolution time and the initial volume with an overall scaling coefficient of ∼0.53. We quantitatively assessed and found a shorter dissolution time related to a decrease in the pH of the aqueous phase or an increase in the initial polymer concentration in the drop. Examining the internal state of the drop during the dissolution revealed an in-drop phase separation behavior, resulting in a porous morphology of the final polymer particle. Our experimental results provide a microscopic view of the SHS dissolution process from droplets, and findings may help design SHS extraction processes for particle formation from emulsions.

7.
Chem Commun (Camb) ; 57(92): 12293-12296, 2021 Nov 19.
Article in English | MEDLINE | ID: mdl-34734220

ABSTRACT

The hydroxyl radical (˙OH), generated from Fenton/Fenton-like reactions of iron(II) species in biology, can oxidatively damage biomolecules, inducing oxidative stress and diseases. However, this common understanding has been questioned recently after a carbonate radical was observed from the Fenton-like reaction of the iron(II)-carbonate complex. Herein, we report that the Fenton-like reaction of the iron(II)-histidine complex, one major iron(II) species in blood plasma, can occur at neutral pH to generate ˙OH, not iron(IV). Our findings and critical analyses on relevant studies clarify the above doubt, reveal a new pathway of causing oxidative stress by the iron(II) species, and have implications for Alzheimer's disease.


Subject(s)
Hydroxyl Radical , Alzheimer Disease , Electron Spin Resonance Spectroscopy , Histidine , Hydrogen Peroxide , Oxidative Stress
8.
Proc Natl Acad Sci U S A ; 118(23)2021 Jun 08.
Article in English | MEDLINE | ID: mdl-34088844

ABSTRACT

The physicochemical hydrodynamics of bubbles and droplets out of equilibrium, in particular with phase transitions, display surprisingly rich and often counterintuitive phenomena. Here we experimentally and theoretically study the nucleation and early evolution of plasmonic bubbles in a binary liquid consisting of water and ethanol. Remarkably, the submillimeter plasmonic bubble is found to be periodically attracted to and repelled from the nanoparticle-decorated substrate, with frequencies of around a few kilohertz. We identify the competition between solutal and thermal Marangoni forces as the origin of the periodic bouncing. The former arises due to the selective vaporization of ethanol at the substrate's side of the bubble, leading to a solutal Marangoni flow toward the hot substrate, which pushes the bubble away. The latter arises due to the temperature gradient across the bubble, leading to a thermal Marangoni flow away from the substrate, which sucks the bubble toward it. We study the dependence of the frequency of the bouncing phenomenon from the control parameters of the system, namely the ethanol fraction and the laser power for the plasmonic heating. Our findings can be generalized to boiling and electrolytically or catalytically generated bubbles in multicomponent liquids.

9.
Bioorg Chem ; 111: 104973, 2021 06.
Article in English | MEDLINE | ID: mdl-34004586

ABSTRACT

Parthenolide and micheliolide have attracted great attention in anticancer research due to their unique activities. In this study, thirteen parthenolide derivatives and twenty-three micheliolide derivatives were synthesized. Most synthesized compounds showed higher cytotoxicity than parthenolide or micheliolide. The in vivo anticancer activity of several representative compounds was evaluated in mice. One micheliolide derivative, 9-oxomicheliolide (43), showed promising in vivo antitumor activity compared with clinical drugs cyclophosphamide or temozolomide. Compound 43 was particularly effective against glioblastoma, with its tumor inhibition rate in mice comparable to the drug temozolomide. The discovery of compound 43 also demonstrates the feasibility of developing anticancer micheliolide derivatives by modification at C-9 position. Anticancer mechanism studies revealed that 9-oxomicheliolide exhibited inhibition effect against NF-κB and STAT3 signaling pathways, as well as induction effects of cell apoptosis. It is postulated that 9-oxomicheliolide is likely to be a modulator of the immune system, which regulates the anticancer immune responses.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Design , NF-kappa B/antagonists & inhibitors , STAT3 Transcription Factor/antagonists & inhibitors , Sesquiterpenes, Guaiane/pharmacology , Sesquiterpenes/pharmacology , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Male , Mice , Mice, Inbred Strains , Molecular Structure , NF-kappa B/metabolism , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/metabolism , Neoplasms, Experimental/pathology , STAT3 Transcription Factor/metabolism , Sesquiterpenes/chemical synthesis , Sesquiterpenes/chemistry , Sesquiterpenes, Guaiane/chemical synthesis , Sesquiterpenes, Guaiane/chemistry , Structure-Activity Relationship , Tumor Cells, Cultured
10.
Nanotechnology ; 32(14): 145301, 2021 Apr 02.
Article in English | MEDLINE | ID: mdl-33316785

ABSTRACT

Micro/nanofabrication of polymer materials is of interest for micro/nanofluidic systems. Due to the optical diffraction limit, it remains a challenge to achieve nanoscale resolution fabrication using an ordinary continuous-wave laser system. In this study, we therefore propose a laser photonic nanojet-based micro/nanofabrication method for polymer materials using a low-power and low-cost continuous-wave laser. The photonic nanojets were produced using glass microspheres. Moreover, a thermoplasmonic effect was employed by depositing a gold layer beneath the polymer films. By applying the photonic nanojet triggered thermoplasmonics, sub-micrometer surface structures, as well as their arrays, were fabricated with a laser power threshold value down to 10 mW. The influences of the microsphere diameters, and thicknesses of gold layers and polymer films on the fabricated microstructures were systematically investigated, which aligns well with the finite-difference time-domain simulation results.

11.
J Phys Chem Lett ; 11(20): 8631-8637, 2020 Oct 15.
Article in English | MEDLINE | ID: mdl-32960058

ABSTRACT

The growth of surface plasmonic microbubbles in binary water/ethanol solutions is experimentally studied. The microbubbles are generated by illuminating a gold nanoparticle array with a continuous wave laser. Plasmonic bubbles exhibit ethanol concentration-dependent behaviors. For low ethanol concentrations (fe) of ≲67.5%, bubbles do not exist at the solid-liquid interface. For high fe values of ≳80%, the bubbles behave as in pure ethanol. Only in an intermediate window of 67.5% ≲ fe ≲ 80% do we find sessile plasmonic bubbles with a highly nontrivial temporal evolution, in which as a function of time three phases can be discerned. (1) In the first phase, the microbubbles grow, while wiggling. (2) As soon as the wiggling stops, the microbubbles enter the second phase in which they suddenly shrink, followed by (3) a steady reentrant growth phase. Our experiments reveal that the sudden shrinkage of the microbubbles in the second regime is caused by a depinning event of the three-phase contact line. We systematically vary the ethanol concentration, laser power, and laser spot size to unravel water recondensation as the underlying mechanism of the sudden bubble shrinkage in phase 2.

12.
Bioorg Med Chem ; 28(13): 115557, 2020 07 01.
Article in English | MEDLINE | ID: mdl-32546298

ABSTRACT

Parthenolide is an important sesquiterpene lactone with potent anticancer activities. In order to further improve its biological activity, a series of parthenolide semicarbazone or thiosemicarbazone derivatives was synthesized and evaluated for their anticancer activity. Derivatives were tested in vitro against 5 human tumor cell lines, and many of these showed higher cytotoxicity than parthenolide. Five compounds were further studied for their antitumor activity in mice. The in vivo result indicated that compound 4d showed both promising antitumor activity against mice colon tumor and small side effects on immune systems. The cell apoptosis and cell cycle distribution of compound 4d were also studied. Molecular docking studies revealed multiple interactions between 4d and NF-κB. Our findings demonstrate the potential of semicarbazones as a promising type of compounds with anticancer activity.


Subject(s)
Antineoplastic Agents/chemical synthesis , Semicarbazones/chemical synthesis , Sesquiterpenes/chemistry , Thiosemicarbazones/chemical synthesis , Animals , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Carbamates/chemistry , Cell Line, Tumor , Cell Survival/drug effects , Drug Screening Assays, Antitumor , Humans , Male , Mice , Mice, Inbred C57BL , Molecular Docking Simulation , NF-kappa B/metabolism , Neoplasms, Experimental , Semicarbazones/pharmacology , Structure-Activity Relationship , Thiosemicarbazones/pharmacology
13.
J Phys Chem C Nanomater Interfaces ; 124(4): 2591-2597, 2020 Jan 30.
Article in English | MEDLINE | ID: mdl-32030112

ABSTRACT

Metal nanoparticles under laser irradiation can produce enormous heat due to surface plasmon resonance. When submerged in a liquid, this can lead to the nucleation of plasmonic bubbles. In the very early stage, the nucleation of a giant vapor bubble was observed with an ultrahigh-speed camera. In this study, the formation of this giant bubble on gold nanoparticles in six binary liquid combinations has been investigated. We find that the time delay between the beginning of the laser heating and the bubble nucleation is determined by the absolute amount of dissolved gas in the liquid. Moreover, the bubble volume mainly depends on the vaporization energy of the liquid, consisting of the latent heat of vaporization and the energy needed to reach the boiling temperature. Our results contribute to controlling the initial giant bubble nucleation and have strong bearings on applications of such bubbles.

14.
RSC Adv ; 10(57): 34938-34942, 2020 Sep 16.
Article in English | MEDLINE | ID: mdl-35514391

ABSTRACT

An efficient and mild method has been developed for the amination of ß-methoxy amides (γ-lactones) including natural products michelolide, costunolide and parthenolide derivatives by using lithium chloride in good yields. This reaction is applicable to a wide range of substrates with good functional group tolerance. Mechanism studies show that the reactions undergo a LiCl promoted MeOH elimination from the substrates to form the corresponding α,ß-unsaturated intermediates followed by the Michael addition of amines.

15.
Phys Rev E ; 102(6-1): 063109, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33466073

ABSTRACT

Water-immersed gold nanoparticles irradiated by a laser can trigger the nucleation of plasmonic bubbles after a delay time of a few microseconds [Wang et al., Proc. Natl. Acad. Sci. USA 122, 9253 (2018)]. Here we systematically investigated the light-vapor conversion efficiency, η, of these plasmonic bubbles as a function of the ambient pressure. The efficiency of the formation of these initial-phase and mainly water-vapor containing bubbles, which is defined as the ratio of the energy that is required to form the vapor bubbles and the total energy dumped in the gold nanoparticles before nucleation of the bubble by the laser, can be as high as 25%. The amount of vaporized water first scales linearly with the total laser energy dumped in the gold nanoparticles before nucleation, but for larger energies the amount of vaporized water levels off. The efficiency η decreases with increasing ambient pressure. The experimental observations can be quantitatively understood within a theoretical framework based on the thermal diffusion equation and the thermal dynamics of the phase transition.

16.
Langmuir ; 35(47): 15029-15037, 2019 Nov 26.
Article in English | MEDLINE | ID: mdl-31702925

ABSTRACT

Surface nanobubbles are the main gaseous domains forming at solid-liquid interfaces, and their abnormally long lifetime (stability) is still an open question. A hypothesis "gas tunnel" was presented in a recent simulation study [ACS Nano 2018, 12 (3), 2603-2609], which was thought to connect two neighboring nanobubbles and make the nanobubbles remain stable. Herein, we aim to experimentally investigate the existence of gas tunnel and its role in governing nanobubble dynamics. By using an atomic force microscope, mutual effects between different gaseous domains including nanobubbles, nanopancakes, and nanobubble-pancake composite on a PS substrate undergoing violent tip perturbation and their effects on the undisturbed neighbors were investigated. The pancake between two nanobubbles can behave as a visible gas tunnel under the tip-bubble interaction. Based on statistical analysis of volume change in the different gas domains, the concept of a generalized gas tunnel is presented and experimentally verified. Nanobubbles are surrounded by a water depletion layer which will act as a channel along solid/liquid surfaces for adjacent nanobubbles to communicate with each other. Moreover, the change in contact angle of nanobubbles with the concentration of local gas oversaturation was studied, and the equilibrium contact angle of nanobubbles is further verified experimentally.

17.
Arch Biochem Biophys ; 668: 39-45, 2019 06 15.
Article in English | MEDLINE | ID: mdl-31100219

ABSTRACT

The Fenton-like reaction of iron(II)-citrate with hydrogen peroxide is physiologically important because it is associated with the oxidative stress and pathological processes induced by the redox-active iron pool in vivo. However, the oxidizing species generated from this reaction at neutral pH has not been convincingly identified because two extremely unstable and hard-to-differentiate species, the hydroxyl radical (•OH) and iron(IV) (ferryl) species, can be produced. Identifying this species is essential for understanding the reaction mechanism. Although there were few data that reported the detection of •OH from this reaction by using the EPR and fluorescence techniques, most of these data were obtained without the necessary assessment with a •OH scavenger. Furthermore, these two techniques may not be able to differentiate the •OH and iron(IV) species. Thus, these reported data cannot lead to a convincing conclusion that the •OH, not the iron(IV) species, was generated. Therefore, in the study reported herein, we carried out systematic investigations first by using the EPR and fluorescence techniques combined with a •OH scavenger to detect the oxidizing species generated from this Fenton-like reaction. Then we utilized NMR spectroscopy and for the first time obtained convincing evidence to demonstrate that this oxidizing species is the •OH rather than iron(IV) species. We also determined the second-order rate constant of the reaction, 3.6 × 103 M-1s-1 (pH7.0, 25 °C), by using the stopped-flow spectrophotometry. On the basis of these findings, a scheme is proposed for the mechanism of this physiologically important Fenton-like reaction.


Subject(s)
Ferrous Compounds/chemistry , Hydrogen Peroxide/chemistry , Hydroxyl Radical/analysis , Citric Acid , Electron Spin Resonance Spectroscopy , Kinetics , Models, Chemical , Oxidation-Reduction , Spectrophotometry
18.
Langmuir ; 34(36): 10659-10667, 2018 09 11.
Article in English | MEDLINE | ID: mdl-30102544

ABSTRACT

The formation and evolution of immersed surface micro- and nanobubbles are essential in various practical applications, such as the usage of superhydrophobic materials, drug delivery, and mineral flotation. In this work, we investigate the entrapment of microbubbles on a hydrophobic surface, structured with microwells, when water flow passes along, and the subsequent microbubble dissolution. At entrapment, the microbubble is initially pinned at the edge of the microwell. At some point, the three-phase contact line detaches from one side of the edge and separates from the wall, after which it further recedes. We systematically investigate the evolution of the footprint diameter and the contact angle of the entrapped microbubbles, which reveals that the dissolution process is in the constant contact angle mode. By varying the gas undersaturation level, we quantify how a high gas undersaturation enhances the dissolution process, and compare with simplified theoretical predictions for dissolving bubbles on a plane surface. We find that geometric partial blockage effects of the diffusive flux out of the microbubble trapped in the microwell lead to reduced dissolution rates.

19.
Langmuir ; 34(4): 1371-1375, 2018 01 30.
Article in English | MEDLINE | ID: mdl-29281795

ABSTRACT

We present thermal noise measurements of a vibrating sphere close to microsized air bubbles in water with an atomic force microscope. The sphere was glued at the end of a cantilever with a resonance frequency of few kHz. The subangstrom thermal motion of the microsphere reveals an elastohydrodynamic coupling between the sphere and the air bubble. The results are in perfect agreement with a model incorporating macroscopic capillarity and fluid flow on the bubble surface with full slip boundary conditions.

SELECTION OF CITATIONS
SEARCH DETAIL
...