Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 118
Filter
1.
Sci Data ; 11(1): 805, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39033182

ABSTRACT

Circulating cell-free DNA (cfDNA) in the peripheral blood is a promising biomarker for cancer diagnosis and prognosis. Somatic mutations identified in cancers have been used to detect therapeutic targets for clinical transformation and individualize drug selection, while germline variants can predict a patient's risk of developing cancer and drug sensitivity. However, no platform has been developed to analyze, calculate, integrate, and friendly visualize these pan-cancer cfDNA mutations deeply. In this work, we performed panel sequencing encompassing 1,115 cancer-related genes across 16,659 cancer patients, spanning 27 cancer types. We detected 496 germline variants in leukocytes and 11,232 somatic mutations in the cfDNA of all patients. CPGV (Cancer Peripheral blood Gene Variations), a database constructed from this dataset, is the first pan-cancer cfDNA database that encompasses somatic mutations, germline variants, and further comparative analyses of mutations across different cancer types. It bears great promise to serve as a valuable resource for cancer research.


Subject(s)
Neoplasms , Humans , Neoplasms/genetics , Neoplasms/blood , Mutation , Germ-Line Mutation , Cell-Free Nucleic Acids/blood , Cell-Free Nucleic Acids/genetics , Biomarkers, Tumor/blood , Biomarkers, Tumor/genetics , Genetic Variation , Databases, Genetic
2.
Phenomics ; 4(2): 91-108, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38884061

ABSTRACT

The integration of predictive, preventive, personalized, and participatory (P4) healthcare advocates proactive intervention, including dietary supplements and lifestyle interventions for chronic disease. Personal profiles include deep phenotypic data and genetic information, which are associated with chronic diseases, can guide proactive intervention. However, little is known about how to design an appropriate intervention mode to precisely intervene with personalized phenome-based data. Here, we report the results of a 3-month study on 350 individuals with metabolic syndrome high-risk that we named the Pioneer 350 Wellness project (P350). We examined: (1) longitudinal (two times) phenotypes covering blood lipids, blood glucose, homocysteine (HCY), and vitamin D3 (VD3), and (2) polymorphism of genes related to folic acid metabolism. Based on personalized data and questionnaires including demographics, diet and exercise habits information, coaches identified 'actionable possibilities', which combined exercise, diet, and dietary supplements. After a 3-month proactive intervention, two-thirds of the phenotypic markers were significantly improved in the P350 cohort. Specifically, we found that dietary supplements and lifestyle interventions have different effects on phenotypic improvement. For example, dietary supplements can result in a rapid recovery of abnormal HCY and VD3 levels, while lifestyle interventions are more suitable for those with high body mass index (BMI), but almost do not help the recovery of HCY. Furthermore, although people who implemented only one of the exercise or diet interventions also benefited, the effect was not as good as the combined exercise and diet interventions. In a subgroup of 226 people, we examined the association between the polymorphism of genes related to folic acid metabolism and the benefits of folate supplementation to restore a normal HCY level. We found people with folic acid metabolism deficiency genes are more likely to benefit from folate supplementation to restore a normal HCY level. Overall, these results suggest: (1) phenome-based data can guide the formulation of more precise and comprehensive interventions, and (2) genetic polymorphism impacts clinical responses to interventions. Notably, we provide a proactive intervention example that is operable in daily life, allowing people with different phenome-based data to design the appropriate intervention protocol including dietary supplements and lifestyle interventions. Supplementary Information: The online version contains supplementary material available at 10.1007/s43657-023-00115-z.

3.
BMC Musculoskelet Disord ; 25(1): 432, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38831438

ABSTRACT

BACKGROUND: Osteoporotic vertebral compression fractures (OVCF) in the elderly increase refracture risk post-surgery, leading to higher mortality rates. Genome-wide association studies (GWAS) have identified susceptibility genes for osteoporosis, but the phenotypic variance explained by these genes has been limited, indicating the need to explore additional causal factors. Epigenetic modifications, such as DNA methylation, may influence osteoporosis and refracture risk. However, prospective cohorts for assessing epigenetic alterations in Chinese elderly patients are lacking. Here, we propose to conduct a prospective cohort study to investigate the causal network of DNA polymorphisms, DNA methylation, and environmental factors on the development of osteoporosis and the risk of refracture. METHODS: We will collect vertebral and peripheral blood from 500 elderly OVCF patients undergoing surgery, extract DNA, and generate whole genome genotype data and DNA methylation data. Observation indicators will be collected and combined with one-year follow-up data. A healthy control group will be selected from a natural population cohort. Epigenome-wide association studies (EWAS) of osteoporosis and bone mineral density will be conducted. Differential methylation analysis will compare candidate gene methylation patterns in patients with and without refracture. Multi-omics prediction models using genetic variants and DNA methylation sites will be built to predict OVCF risk. DISCUSSION: This study will be the first large-scale population-based study of osteoporosis and bone mineral density phenotypes based on genome-wide data, multi-time point methylation data, and phenotype data. By analyzing methylation changes related to osteoporosis and bone mineral density in OVCF patients, the study will explore the feasibility of DNA methylation in evaluating postoperative osteoporosis intervention effects. The findings may identify new molecular markers for effective anti-osteoporosis treatment and inform individualized prevention and treatment strategies. TRIAL REGISTRATION: chictr.org.cn ChiCTR2200065316, 02/11/2022.


Subject(s)
DNA Methylation , Osteoporosis , Osteoporotic Fractures , Spinal Fractures , Humans , Prospective Studies , Aged , Female , Osteoporosis/genetics , Male , Osteoporotic Fractures/genetics , Spinal Fractures/genetics , Genome-Wide Association Study , Bone Density/genetics , Fractures, Compression/genetics , Middle Aged , Epigenesis, Genetic , Recurrence , Aged, 80 and over , China/epidemiology
4.
Nat Genet ; 56(5): 846-860, 2024 May.
Article in English | MEDLINE | ID: mdl-38641644

ABSTRACT

Methylation quantitative trait loci (mQTLs) are essential for understanding the role of DNA methylation changes in genetic predisposition, yet they have not been fully characterized in East Asians (EAs). Here we identified mQTLs in whole blood from 3,523 Chinese individuals and replicated them in additional 1,858 Chinese individuals from two cohorts. Over 9% of mQTLs displayed specificity to EAs, facilitating the fine-mapping of EA-specific genetic associations, as shown for variants associated with height. Trans-mQTL hotspots revealed biological pathways contributing to EA-specific genetic associations, including an ERG-mediated 233 trans-mCpG network, implicated in hematopoietic cell differentiation, which likely reflects binding efficiency modulation of the ERG protein complex. More than 90% of mQTLs were shared between different blood cell lineages, with a smaller fraction of lineage-specific mQTLs displaying preferential hypomethylation in the respective lineages. Our study provides new insights into the mQTL landscape across genetic ancestries and their downstream effects on cellular processes and diseases/traits.


Subject(s)
DNA Methylation , East Asian People , Quantitative Trait Loci , Female , Humans , Male , East Asian People/genetics , Genetic Predisposition to Disease , Genome-Wide Association Study/methods , Multifactorial Inheritance , Polymorphism, Single Nucleotide
6.
Front Pharmacol ; 15: 1287321, 2024.
Article in English | MEDLINE | ID: mdl-38584600

ABSTRACT

Ethnopharmacological relevance: Pelvic inflammatory disease (PID) is a frequently occurring gynecological disorder mainly caused by the inflammation of a woman's upper genital tract. Generally, antibiotics are used for treating PID, but prolonged use poses potential risks of gut bacterial imbalance, bacterial resistance, super bacteria production, and associated adverse reactions. Traditional Chinese medicine (TCM) has shown unique advantages in various ailments and has received widespread clinical research attention. Fuke Qianjin (FUKE) capsule is an approved National Medical Products Administration (NMPA License No. Z20020024) Chinese herbal prescription that has been widely used individually or in combination with other Western medicines for the treatment of various gynecological inflammatory diseases, including chronic cervicitis, endometritis, and chronic PID. Aim: This clinical trial was designed to assess the safety and efficacy of FUKE capsule in mild-to-moderate symptomatic PID patients. Materials and methods: This phase 2, randomized, double-blind, positive controlled clinical trial was conducted in mild-to-moderate symptomatic PID patients at a single center in Pakistan from 21 September 2021 to 11 March 2022. Eligible female participants were randomly assigned to a test and a control group with a ratio of 1:1. The test group subjects received two metronidazole (METRO) tablets and one doxycycline hyclate (DOXY) simulant at a time, twice daily for 14 days, and two Fuke Qianjin (FUKE) capsules, three times a day after a meal for 28 days. Subjects in the control group received two METRO tablets and one DOXY tablet at a time, twice daily for 14 days, and two FUKE simulant capsules, three times a day after meal for 28 days. The primary efficacy outcome was an improvement in pelvic pain symptoms assessed through a visual analog scale (VAS). The secondary outcomes were the improvement in secondary efficacy symptoms like local physical signs, clinical assessment of leucorrhea and cervical secretions through laboratory examination, and improvement in the maximum area of pelvic effusion assessed through gynecological ultrasound after the treatment. The safety outcomes were assessed through vital signs, laboratory tests, electrocardiogram findings, and adverse events/serious adverse events. Results: A total of 198 subjects with active PID were randomly assigned to a test group (n = 99) and a control group (n = 99). The baseline characteristics of the subjects in the two groups were similar. In the intention-to-treat analysis, the primary efficacy was 84.9% for the test group and 71.6% for the control group, with a statistically significant difference (p = 0.0370; 95% CI -0.2568 to -0.0088). The secondary clinical efficacy was 88.4% for the test group and 82.7% for the control group, with no significant difference (p = 0.2977; 95% CI -0.1632 to 0.0501). The improvement in local physical signs was 95.8% for the test group and 76.9% for the control group, with no significant difference (p = 0.0542; 95% CI -0.3697 to -0.0085). The inter-group non-inferiority comparison showed that the upper limit of the 95% CI was less than 0.15 and thus met the non-inferiority requirements of the test group to the control group. The results of clinical signs of leucorrhea and cervical secretions showed that there was no difference in the rate of improvement between the test and control groups, indicating that FUKE was non-inferior to DOXY. A total of 14 adverse events in eight subjects were observed in the trial, with an incidence rate of 4.7%. Four subjects in each group experienced seven adverse events with 4.5% and 4.8% incidence rates of adverse reactions in the test and control groups, with no statistically significant differences (p = 0.2001). No serious adverse events occurred in the trial. Conclusion: The results of this trial indicate that the test drug (Fuke Qianjin capsule) is non-inferior to the control drug (doxycycline hyclate tablet) in treating mild-to-moderate PID patients with comparable efficacy, safety, and tolerability to the control drug. Clinical Trial Registration: www.clinicaltrials.gov, identifier NCT04723069.

7.
PLoS Genet ; 20(1): e1011037, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38206971

ABSTRACT

Explicitly sharing individual level data in genomics studies has many merits comparing to sharing summary statistics, including more strict QCs, common statistical analyses, relative identification and improved statistical power in GWAS, but it is hampered by privacy or ethical constraints. In this study, we developed encG-reg, a regression approach that can detect relatives of various degrees based on encrypted genomic data, which is immune of ethical constraints. The encryption properties of encG-reg are based on the random matrix theory by masking the original genotypic matrix without sacrificing precision of individual-level genotype data. We established a connection between the dimension of a random matrix, which masked genotype matrices, and the required precision of a study for encrypted genotype data. encG-reg has false positive and false negative rates equivalent to sharing original individual level data, and is computationally efficient when searching relatives. We split the UK Biobank into their respective centers, and then encrypted the genotype data. We observed that the relatives estimated using encG-reg was equivalently accurate with the estimation by KING, which is a widely used software but requires original genotype data. In a more complex application, we launched a finely devised multi-center collaboration across 5 research institutes in China, covering 9 cohorts of 54,092 GWAS samples. encG-reg again identified true relatives existing across the cohorts with even different ethnic backgrounds and genotypic qualities. Our study clearly demonstrates that encrypted genomic data can be used for data sharing without loss of information or data sharing barrier.


Subject(s)
Genome-Wide Association Study , Privacy , Humans , Genome-Wide Association Study/methods , Genotype , Software , Genomics
8.
Cancer Biol Ther ; 24(1): 2226353, 2023 12 31.
Article in English | MEDLINE | ID: mdl-37431852

ABSTRACT

BACKGROUND: Accumulating studies demonstrated that resistance of colon cancer (CC) to 5-fluorouracil (5-FU) contributes to adverse prognosis. We investigated how Kruppel-like factor 4 (KLF4) affected 5-FU resistance and autophagy in CC cells. METHODS: KLF4 expression and its downstream target gene RAB26 in CC tissues was analyzed by bioinformatics analysis, and the effect of abnormal KLF4 expression on prognoses of CC patients was predicted. Luciferase reporter assay detected the targeted relationship between KLF4 and RAB26. The viability and apoptosis of CC cells were analyzed by CCK-8 and flow cytometry. The formation of intracellular autophagosomes was detected by confocal laser scanning microscopy and immunofluorescence staining. The mRNA and protein levels were assayed by qRT-PCR and western blot. A xenograft animal model was constructed to verify the function of KLF4. Rescue assay was employed to verify whether KLF4/RAB26 could affect 5-FU resistance in CC cells through autophagy. RESULTS: KLF4 and RAB26 were lowly expressed in CC. KLF4 correlated with patients' survival. KLF4 was down-regulated in 5-FU resistant CC cells. KLF4 overexpression suppressed the proliferation and 5-FU resistance of CC cells, and inhibited LC3 II/I expression and autophagosome formation. Autophagy activator Rapamycin or sh-RAB26 treatment reversed the impact of KLF4 overexpression on 5-FU resistance. In vivo assay verified that KLF4 inhibited 5-FU resistance in CC cells. Rescue experiments revealed that KLF4 targeted RAB26 to inhibit CC cell autophagy, resulting in decreasing the resistance to 5-FU. CONCLUSION: KLF4 strengthened the sensitivity of CC cells to 5-FU by targeting RAB26 to restrain autophagy pathway.


Subject(s)
Colonic Neoplasms , Kruppel-Like Factor 4 , Humans , Animals , Colonic Neoplasms/drug therapy , Colonic Neoplasms/genetics , Fluorouracil/pharmacology , Fluorouracil/therapeutic use , Autophagy/genetics , Autophagosomes , Disease Models, Animal
9.
Br J Ophthalmol ; 2023 Jul 31.
Article in English | MEDLINE | ID: mdl-37524447

ABSTRACT

PURPOSE: To investigate genetic loci associated with ocular axial length (AL) in the Chinese population. METHODS: A genome-wide association study meta-analysis was conducted in totalling 2644 Chinese individuals from 3 cohorts: the Guangzhou cohort (GZ, 537 high myopes and 151 hyperopes), Wenzhou cohort (334 high myopes and 6 hyperopes) and Guangzhou Twin Eye Study (1051 participants with normally distributed AL). Functional mapping was performed to annotate the significant signals, possible tissues and cell types by integrating available multiomics data. Logistic regression models using AL-associated SNPs were constructed to predict three AL status in GZ. RESULTS: Two novel loci (1q25.2 FAM163A and 7p22.2 SDK1) showed genome-wide significant associations with AL, together explaining 29.63% of AL variance in GZ. The two lead SNPs improved the prediction accuracy for AL status, especially for hyperopes. The frequencies of AL decreasing (less myopic) alleles of the two SNPs were lowest in East Asians as compared with other populations (rs17370084: f EAS=0.03, f EUR=0.24, f AFR=0.05; rs73046501: f EAS=0.06, f EUR=0.07, f AFR=0.20), which was in line with the global distribution of myopia. The cerebral cortex and gamma-aminobutyric acidergic interneurons showed possible functional involvement in myopia development, and the galactose metabolic pathways were significantly enriched. CONCLUSION: Our study identified two population-specific novel loci for AL, expanding our understanding of the genetic basis of AL and providing evidence for a role of the nervous system and glucose metabolism in myopia pathogenesis.

10.
J Clin Periodontol ; 50(2): 252-264, 2023 02.
Article in English | MEDLINE | ID: mdl-36274052

ABSTRACT

AIM: This study sought to investigate associations of 25-hydroxyvitamin D (25(OH)D) metabolites with periodontitis and to assess causality using Mendelian randomization (MR). MATERIALS AND METHODS: This study included 7246 participants of the National Health and Nutrition Examination Survey, 2009-2012. The association of periodontitis with 25(OH)D metabolites was assessed using multivariable logistic regression analysis. Two-sample MR for 25(OH)D, 25(OH)D3 , and C3-epi-25(OH)D3 with periodontitis (n = 17,353 cases/28,210 controls) was conducted. The principal analysis employed the inverse-variance-weighted (IVW) approach. We controlled for horizontal pleiotropy using five additional methods. RESULTS: Based on the observational study, each 1-point increase in standard deviation of 25(OH)D lowered the risk of periodontitis by 15% (OR = 0.85, 95% confidence interval [CI]: 0.78-0.93, p = .006) after multivariable adjustment. A similar relationship was observed between 25(OH)D3 and periodontitis (OR = 0.88, 95% CI: 0.80-0.97, p = .031). Furthermore, a potential non-linear association was found between periodontitis and both 25(OH)D and 25(OH)D3 . However, C3-epi-25(OH)D3 was not found to be associated with periodontitis risk. IVW-MR showed that periodontitis risk was not significantly associated with genetically increased levels of 25(OH)D (OR = 1.02, 95% CI: 0.90-1.16, p = .732), 25(OH)D3 (OR = 1.04, 95% CI: 0.93-1.17, p = .472), or C3-epi-25(OH)D3 (OR = 1.11, 95% CI: 0.87-1.41, p = .400). The pleiotropy-robust MR approaches yielded similar results after we had eliminated the variants with horizontal pleiotropy risk. CONCLUSIONS: Cross-sectional observational analysis identified significant relationships between periodontitis with 25(OH)D metabolites, while findings based on MR study did not support a causal role.


Subject(s)
Mendelian Randomization Analysis , Periodontitis , Humans , Nutrition Surveys , Mendelian Randomization Analysis/methods , Cross-Sectional Studies , Periodontitis/genetics , Polymorphism, Single Nucleotide , Genome-Wide Association Study
11.
Mol Biol Evol ; 39(6)2022 06 02.
Article in English | MEDLINE | ID: mdl-35642306

ABSTRACT

As the best adapted high altitude population, Tibetans feature a relatively high offspring survival rate. Genome-wide studies have identified hundreds of candidate SNPs related to high altitude adaptation of Tibetans, although most of them have unknown functional relevance. To explore the mechanisms behind successful reproduction at high altitudes, we compared the placental transcriptomes of Tibetans, sea level Hans (SLHan), and Han immigrants (ImHan). Among the three populations, placentas from ImHan showed a hyperactive gene expression pattern. Their increased activation demonstrates a hypoxic stress response similar to sea level individuals experiencing hypoxic conditions. Unlike ImHan, Tibetan placentas were characterized by the significant up-regulation of placenta-specific genes, and the activation of autophagy and the tricarboxylic acid (TCA) cycle. Certain conserved hypoxia response functions, including the antioxidant system and angiogenesis, were activated in both ImHan and Tibetans, but mediated by different genes. The coherence of specific transcriptome features linked to possible genetic contribution was observed in Tibetans. Furthermore, we identified a novel Tibetan-specific EPAS1 isoform with a partial deletion at exon six, which may be involved in the adaption to hypoxia through the EPAS1-centred gene network in the placenta. Overall, our results show that the placenta grants successful pregnancies in Tibetans by strengthening the natural functions of the placenta itself. On the other hand, the placenta of ImHan was in an inhabiting time-dependent acclimatization process representing a common hypoxic stress response pattern.


Subject(s)
Altitude , Transcriptome , Acclimatization/genetics , Female , Hemoglobins/genetics , Humans , Hypoxia/metabolism , Placenta/metabolism , Pregnancy , Reproduction , Tibet
12.
Comput Intell Neurosci ; 2022: 1885677, 2022.
Article in English | MEDLINE | ID: mdl-35371255

ABSTRACT

Fatigue driving is one of the main reasons for the occurrence of traffic accidents. Brain-computer interface, as a human-computer interaction method based on EEG signals, can communicate with the outside world and move freely through brain signals without relying on the peripheral neuromuscular system. In this paper, a simulation driving platform composed of driving simulation equipment and driving simulation software is used to simulate the real driving process. The EEG signals of the subjects are collected through simulated driving, and the EEG of five subjects is selected as the training sample, and the remaining one is the subject. As a test sample, perform feature extraction and classification experiments, select any set of normal signals and fatigue signals recorded in the driving fatigue experiment for data analysis, and then study the classification of driver fatigue levels. Experiments have proved that the PSO-H-ELM algorithm has only about 4% advantage compared with the average accuracy of the KNN algorithm and the SVM algorithm. The gap is not as big as expected, but as a new algorithm, it is applied to the detection of fatigue EEG. The two traditional algorithms are indeed more suitable. It shows that the driver fatigue level can be judged by detecting EEG, which will provide a basis for the development of on-board, real-time driving fatigue alarm devices. It will lay the foundation for traffic management departments to intervene in driving fatigue reasonably and provide a reliable basis for minimizing traffic accidents.


Subject(s)
Automobile Driving , Electroencephalography , Accidents, Traffic/prevention & control , Brain , Electroencephalography/methods , Fatigue , Humans
13.
J Med Genet ; 59(1): 88-100, 2022 01.
Article in English | MEDLINE | ID: mdl-33318135

ABSTRACT

BACKGROUND: Myopia is the leading cause of refractive errors. As its pathogenesis is poorly understood, we determined if the retinal VIP-VIPR2 signalling pathway axis has a role in controlling signalling output that affects myopia development in mice. METHODS: Association analysis meta-study, single-cell transcriptome, bulk RNA sequencing, pharmacological manipulation and VIPR2 gene knockout studies were used to clarify if changes in the VIP-VIPR2 signalling pathway affect refractive development in mice. RESULTS: The SNP rs6979985 of the VIPR2 gene was associated with high myopia in a Chinese Han cohort (randomceffect model: p=0.013). After either 1 or 2 days' form deprivation (FD) retinal VIP mRNA expression was downregulated. Retinal single-cell transcriptome sequencing showed that VIPR2 was expressed mainly by bipolar cells. Furthermore, the cAMP signalling pathway axis was inhibited in some VIPR2+ clusters after 2 days of FD. The selective VIPR2 antagonist PG99-465 induced relative myopia, whereas the selective VIPR2 agonist Ro25-1553 inhibited this response. In Vipr2 knockout (Vipr2-KO) mice, refraction was significantly shifted towards myopia (p<0.05). The amplitudes of the bipolar cell derived b-waves in 7-week-old Vipr2-KO mice were significantly larger than those in their WT littermates (p<0.05). CONCLUSIONS: Loss of VIPR2 function likely compromises bipolar cell function based on presumed changes in signal transduction due to altered signature electrical wave activity output in these mice. As these effects correspond with increases in form deprivation myopia (FDM), the VIP-VIPR2 signalling pathway axis is a viable novel target to control the development of this condition.


Subject(s)
Genetic Predisposition to Disease , Myopia/genetics , Polymorphism, Single Nucleotide , Receptors, Vasoactive Intestinal Peptide, Type II/genetics , Retina/metabolism , Animals , Asian People/genetics , Female , Humans , Male , Mice , Mice, Knockout , Myopia/metabolism , RNA-Seq , Receptors, Vasoactive Intestinal Peptide, Type II/metabolism , Signal Transduction , Single-Cell Analysis
14.
Genomics Proteomics Bioinformatics ; 20(1): 177-191, 2022 02.
Article in English | MEDLINE | ID: mdl-34624550

ABSTRACT

Postzygotic mutations are acquired in normal tissues throughout an individual's lifetime and hold clues for identifying mutagenic factors. Here, we investigated postzygotic mutation spectra of healthy individuals using optimized ultra-deep exome sequencing of the time-series samples from the same volunteer as well as the samples from different individuals. In blood, sperm, and muscle cells, we resolved three common types of mutational signatures. Signatures A and B represent clock-like mutational processes, and the polymorphisms of epigenetic regulation genes influence the proportion of signature B in mutation profiles. Notably, signature C, characterized by C>T transitions at GpCpN sites, tends to be a feature of diverse normal tissues. Mutations of this type are likely to occur early during embryonic development, supported by their relatively high allelic frequencies, presence in multiple tissues, and decrease in occurrence with age. Almost none of the public datasets for tumors feature this signature, except for 19.6% of samples of clear cell renal cell carcinoma with increased activation of the hypoxia-inducible factor 1 (HIF-1) signaling pathway. Moreover, the accumulation of signature C in the mutation profile was accelerated in a human embryonic stem cell line with drug-induced activation of HIF-1α. Thus, embryonic hypoxia may explain this novel signature across multiple normal tissues. Our study suggests that hypoxic condition in an early stage of embryonic development is a crucial factor inducing C>T transitions at GpCpN sites; and individuals' genetic background may also influence their postzygotic mutation profiles.


Subject(s)
Epigenesis, Genetic , Semen , Adult , Humans , Hypoxia , Hypoxia-Inducible Factor 1 , Male , Mutation
15.
J Genet Genomics ; 49(1): 54-62, 2022 01.
Article in English | MEDLINE | ID: mdl-34520856

ABSTRACT

The global "myopia boom" has raised significant international concerns. Despite a higher myopia prevalence in Asia, previous large-scale genome-wide association studies (GWASs) were mostly based on European descendants. Here, we report a GWAS of spherical equivalent (SE) in 1852 Chinese Han individuals with extreme SE from Guangzhou (631 < -6.00D and 574 > 0.00D) and Wenzhou (593 < -6.00D and 54 > -1.75D), followed by a replication study in two independent cohorts with totaling 3538 East Asian individuals. The discovery GWAS and meta-analysis identify three novel loci, which show genome-wide significant associations with SE, including 1q25.2 FAM163A, 10p11.22 NRP1/PRAD3, and 10p11.21 ANKRD30A/MTRNR2L7, together explaining 3.34% of SE variance. 10p11.21 is successfully replicated. The allele frequencies of all three loci show significant differences between major continental groups (P < 0.001). The SE reducing (more myopic) allele of rs10913877 (1q25.2 FAM163A) demonstrates the highest frequency in East Asians and much lower frequencies in Europeans and Africans (EAS = 0.60, EUR = 0.20, and AFR = 0.18). The gene-based analysis additionally identifies three novel genes associated with SE, including EI24, LHX5, and ARPP19. These results provide new insights into myopia pathogenesis and indicate the role of genetic heterogeneity in myopia epidemiology among different ethnicities.


Subject(s)
Genome-Wide Association Study , Myopia , Apoptosis Regulatory Proteins/genetics , Asian People/genetics , Genetic Loci/genetics , Genetic Predisposition to Disease/genetics , Humans , Membrane Proteins/genetics , Myopia/epidemiology , Myopia/genetics , Neoplasm Proteins/genetics , Nuclear Proteins/genetics , Phenotype , Polymorphism, Single Nucleotide/genetics
16.
Anal Chim Acta ; 1186: 339086, 2021 Nov 22.
Article in English | MEDLINE | ID: mdl-34756249

ABSTRACT

Carbon fiber microelectrode arrays based on diazonium salt and single-walled carbon nanotubes composites (DS-SWCNT/CFMEA) have been fabricated, and it developed for the simultaneous monitoring of dopamine (DA) and serotonin (5-HT) with differential pulse voltammary (DPV). The diazonium salt can improve the water-solubility of single-walled carbon nanotubes and show good selectivity to DA, thus DS-SWCNT/CFMEA exhibits enhanced electrocatalytic activity for the oxidation of DA and 5-HT, and well antifouling ability to the other biomolecules. Moreover, DS-SWCNT/CFMEA shows the wider liner range, and the good performance of precision, reproducibility and biocompatibility. The excellent characteristics of the prepared microsensor array make it to be used to monitor the release of DA and 5-HT in the mouse brain striatum of different group over time. Meanwhile, the results of in vivo on line assay further confirmed the pharmacological effects of Uncaria alkaloid extract solution on DA and 5-HT. This research may provide a new method for monitoring the release of neurobiomolecules, and the microsensor array are expected to be a tool for the study of pharmacological and physiological processes on line in vivo.


Subject(s)
Dopamine , Nanotubes, Carbon , Animals , Carbon Fiber , Mice , Microelectrodes , Reproducibility of Results , Serotonin
17.
Front Genet ; 12: 717621, 2021.
Article in English | MEDLINE | ID: mdl-34707639

ABSTRACT

Plasma total homocysteine (tHCY) is a known risk factor of a wide range of complex diseases. No genome scans for tHCY have been conducted in East Asian populations. Here, we conducted an exome-wide association study (ExWAS) for tHCY in 5,175 individuals of Chinese Han origin, followed by a replication study in 668 Chinese individuals. The ExWAS identified two loci, 1p36.22 (lead single-nucleotide polymorphism (SNP) rs1801133, MTHFR C677T) and 16q24.3 (rs1126464, DPEP1), showing exome-wide significant association with tHCY (p < 5E-7); and both loci have been previously associated with tHCY in non-East Asian populations. Both SNPs were replicated in the replication study (p < 0.05). Conditioning on the genotype of C677T and rs1126464, we identified a novel East Asian-specific missense variant rs138189536 (C136T) of MTHFR (p = 6.53E-10), which was also significant in the replication study (p = 9.8E-3). The C136T and C677T variants affect tHCY in a compound heterozygote manner, where compound heterozygote and homozygote genotype carriers had on average 43.4% increased tHCY than had other genotypes. The frequency of the homozygote C677T genotype showed an inverse-U-shaped geospatial pattern globally with a pronounced frequency in northern China, which coincided with the high prevalence of hyperhomocysteinemia (HHCY) in northern China. A logistic regression model of HHCY status considering sex, age, and the genotypes of the three identified variants reached an area under the receiver operating characteristic curve (AUC) value of 0.74 in an independent validation cohort. These genetic observations provide new insights into the presence of multiple causal mutations at the MTHFR locus, highlight the role of genetics in HHCY epidemiology among different populations, and provide candidate loci for future functional studies.

18.
Exp Eye Res ; 212: 108758, 2021 11.
Article in English | MEDLINE | ID: mdl-34506801

ABSTRACT

Myopia is the most common cause of a visual refractive error worldwide. Cyclic adenosine monophosphate (cAMP)-linked signaling pathways contribute to the regulation of myopia development, and increases in cAMP accumulation promote myopia progression. To pinpoint the underlying mechanisms by which cAMP modulates myopia progression, we performed scleral transcriptome sequencing analysis in form-deprived mice, a well-established model of myopia development. Form deprivation significantly inhibited the expression levels of genes in the cAMP catabolic pathway. Quantitative real-time polymerase chain reaction analysis validated that the gene expression level of phosphodiesterase 4B (PDE4B), a cAMP hydrolase, was downregulated in form-deprived mouse eyes. Under visually unobstructed conditions, loss of PDE4B function in Pde4b-knockout mice increased the myopic shift in refraction, -3.661 ± 1.071 diopters, more than that in the Pde4b-wildtype littermates (P < 0.05). This suggests that downregulation and inhibition of PDE4B gives rise to myopia. In guinea pigs, subconjunctival injection of rolipram, a selective inhibitor of PDE4, led to myopia in normal eyes, and it also enhanced form-deprivation myopia (FDM). Subconjunctival injection of dibutyryl-cyclic adenosine monophosphate, a cAMP analog, induced only a myopic shift in the normal visually unobstructed eyes, but it did not enhance FDM. As myopia developed, axial elongation occurred during scleral remodeling that was correlated with changes in collagen fibril thickness and distribution. The median collagen fibril diameter in the FDM + rolipram group, 55.09 ± 1.83 nm, was thinner than in the FDM + vehicle group, 59.33 ± 2.06 nm (P = 0.011). Thus, inhibition of PDE4 activity with rolipram thinned the collagen fibril diameter relative to the vehicle treatment in form-deprived eyes. Rolipram also inhibited increases in collagen synthesis induced by TGF-ß2 in cultured human scleral fibroblasts. The current results further support a role for PDE enzymes such as PDE4B in the regulation of normal refractive development and myopia because either loss or inhibition of PDE4B function increased myopia and FDM development through declines in the scleral collagen fibril diameter.


Subject(s)
Cyclic Nucleotide Phosphodiesterases, Type 4/genetics , Down-Regulation/genetics , Gene Expression Regulation , Myopia, Degenerative/genetics , RNA/genetics , Sclera/metabolism , Animals , Collagen/metabolism , Cyclic Nucleotide Phosphodiesterases, Type 4/biosynthesis , Disease Models, Animal , Disease Progression , Female , Guinea Pigs , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Microscopy, Electron , Myopia, Degenerative/diagnosis , Myopia, Degenerative/metabolism , Refraction, Ocular/physiology , Sclera/ultrastructure
19.
Bioengineered ; 12(1): 5476-5490, 2021 12.
Article in English | MEDLINE | ID: mdl-34511033

ABSTRACT

LncRNA Cyclin-dependent kinase inhibitor 2B antisense RNA 1 (CDKN2B-AS1) plays a role in the progression of multiple cancers like cholangiocarcinoma, osteosarcoma and several gastrointestinal tumors. Few studies have linked its function and mechanism to the development of colorectal cancer (CRC). The expression of CDKN2B-AS1, microRNA (miR)-378b, and cytoplasmic activation/proliferation-associated protein 2 (CAPRIN2) was analyzed in CRC patients and cell lines. The proliferation and migration of CRC cells were evaluated after gain and loss-of function mutations. Interactions between CDKN2B-AS1 and miR-378b, miR-378b and CAPRIN2 were validated by luciferase reporter, RNA pull-down and RNA immunoprecipitation assays. The role of CDKN2B-AS1 was further confirmed in a xenograft mouse model. We found that the expression of CDKN2B-AS1 and CAPRIN2 was upregulated in CRC and they were linked to the poor differentiation and distant metastasis in CRC patients. CDKN2B-AS1 knockdown attenuated while CDKN2B-AS1 overexpression promoted CRC cell proliferation and migration. Notably, the results of Starbase 2.0 database analysis and in vitro experiments demonstrated that CDKN2B-AS1 could interact with miR-378b and regulate its expression. Furthermore, CAPRIN2 acted as a downstream target of CDKN2B-AS1/miR-378b that involved in modulating ß-catenin expression in CRC cells. Upregulation of CDKN2B-AS1 contributed to CRC progression via regulating CAPRIN2 expression by binding to miR-378b. Downregulation of CDKN2B-AS1 suppressed tumor growth and Ki-67 staining in vivo that was related to the miR-378b/CAPRIN2 pathway. This study indicated that lncRNA CDKN2B-AS1 promoted the development of CRC through the miR-378b/CAPRIN2/ß-catenin axis. CDKN2B-AS1 might serve as a potential and useful target in CRC diagnosis and treatment.


Subject(s)
Cell Proliferation/genetics , Colorectal Neoplasms/genetics , MicroRNAs/genetics , RNA, Long Noncoding/genetics , RNA-Binding Proteins/genetics , Animals , Cell Line, Tumor , Cell Movement/genetics , Colon/metabolism , Colon/pathology , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Female , Gene Expression Regulation, Neoplastic/genetics , Humans , Male , Mice , Mice, Nude , MicroRNAs/metabolism , Middle Aged , RNA, Long Noncoding/metabolism , RNA-Binding Proteins/metabolism , Up-Regulation/genetics
20.
J Clin Transl Hepatol ; 9(3): 399-408, 2021 Jun 28.
Article in English | MEDLINE | ID: mdl-34221926

ABSTRACT

Hepatitis B virus (HBV), one of the well-known DNA oncogenic viruses, is the leading cause of hepatocellular carcinoma (HCC). In infected hepatocytes, HBV DNA can be integrated into the host genome through an insertional mutagenesis process inducing tumorigenesis. Dissection of the genomic features surrounding integration sites will deepen our understanding of mechanisms underlying integration. Moreover, the quantity and biological activity of integration sites may reflect the DNA damage within affected cells or the potential survival benefits they may confer. The well-known human genomic features include repeat elements, particular regions (such as telomeres), and frequently interrupted genes (e.g., telomerase reverse transcriptase [i.e. TERT], lysine methyltransferase 2B [i.e. KMT2B], cyclin E1 [CCNE1], and cyclin A2 [CCNA2]). Consequently, distinct genomic features within diverse integrations differentiate their biological functions. Meanwhile, accumulating evidence has shown that viral proteins produced by integrants may cause cell damage even after the suppression of HBV replication. The integration-derived gene products can also serve as tumor markers, promoting the development of novel therapeutic strategies for HCC. Viral integrants can be single copy or multiple copies of different fragments with complicated rearrangement, which warrants elucidation of the whole viral integrant arrangement in future studies. All of these considerations underlie an urgent need to develop novel methodology and technology for sequence characterization and function evaluation of integration events in chronic hepatitis B-associated disease progression by monitoring both host genomic features and viral integrants. This endeavor may also serve as a promising solution for evaluating the risk of tumorigenesis and as a companion diagnostic for designing therapeutic strategies targeting integration-related disease complications.

SELECTION OF CITATIONS
SEARCH DETAIL
...