Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Ecol Evol ; 21(1): 141, 2021 07 09.
Article in English | MEDLINE | ID: mdl-34243710

ABSTRACT

Multidrug and toxic compound extrusion (MATE) proteins are involved in many physiological functions of plant growth and development. Although an increasing number of MATE proteins have been identified, the understanding of MATE proteins is still very limited in rice. In this study, 46 MATE proteins were identified from the rice (Oryza sativa) genome by homology searches and domain prediction. The rice MATE family was divided into four subfamilies based on the phylogenetic tree. Tandem repeats and fragment replication contribute to the expansion of the rice MATE gene family. Gene structure and cis-regulatory elements reveal the potential functions of MATE genes. Analysis of gene expression showed that most of MATE genes were constitutively expressed and the expression patterns of genes in different tissues were analyzed using RNA-seq. Furthermore, qRT-PCR-based analysis showed differential expression patterns in response to salt and drought stress. The analysis results of this study provide comprehensive information on the MATE gene family in rice and will aid in understanding the functional divergence of MATE genes.


Subject(s)
Oryza , Gene Expression Profiling , Gene Expression Regulation, Plant , Genome, Plant , Multigene Family/genetics , Oryza/genetics , Phylogeny , Plant Proteins/genetics , Stress, Physiological/genetics
2.
Theor Appl Genet ; 134(9): 2767-2776, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34021769

ABSTRACT

KEY MESSAGE: A stable QTL associated with rice grain type with a large effect value was found in multiple environments, and its candidate genes were verified by genetic transformation. Rice (Oryza sativa L.) grain size is critical to both yield and appearance quality. Therefore, the discovery and identification of rice grain size genes can provide pathways for the cultivation of high-yielding varieties. In the present work, 45,607 SNP markers were used to construct a high-density genetic map of rice recombinant inbred lines, and hence a total of 14 quantitative trait loci (QTLs) were detected based on the phenotypic data of grain weight, grain length and grain width under four different environments. qTGW12a and qGL12 are newly detected QTLs related to grain weight, and are located between 22.43 Mb and 22.45 Mb on chromosome 12. Gene annotation shows that the QTL region contains the LOC_Os12g36660 annotated gene, which encodes the multidrug and toxic compound extrusion (MATE) transporter. Mutations in exons and the splice site were responsible for the changes in grain type and weight. Gene knockout experiments were used to verify these results. Hence, these results provide a basis for the cloning of qTGW12a. This discovery provides new insights for studying the genetic mechanism of rice grain morphology, and reveals a promising gene to ultimately increase rice yield.


Subject(s)
Chromosome Mapping/methods , Chromosomes, Plant/genetics , Gene Expression Regulation, Plant , Oryza/growth & development , Oryza/genetics , Plant Proteins/metabolism , Quantitative Trait Loci , Microsatellite Repeats , Phenotype , Plant Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...