Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Huan Jing Ke Xue ; 40(5): 2302-2309, 2019 May 08.
Article in Chinese | MEDLINE | ID: mdl-31087870

ABSTRACT

Microbial electrosynthesis systems (MESs) can convert carbon dioxide into added value compounds using microorganisms as catalyst, which is expected to help achieve conversion of greenhouse gases into resources. However, the synthetic efficiency of MESs is far behind the industry requirements. In this study, carbon cloth surfaces were bonded with carboxyl groups by electrochemical reduction of aryl diazonium salts and then used as a cathode in MESs reactors. The results showed that the hydrophilicity of the carbon cloth surfaces improved after the carboxyl groups were modified. However, weaker current of cyclic voltammetry was obtained in the modified cathode. Significant differences were observed between modified (CA-H, CA-M, CA-L) and non-modified cathode (CK) during the start-up period. After 48h, the hydrogen production rate of CA-H, CA-M, CA-L was 21.45, 28.60, and 22.75 times higher than CK. After 120h, the acetate accumulation concentration of CA-H, CA-M, CA-L was 2.01, 2.43, and 1.44 times higher than CK. After 324h, there was little difference in the electrochemical activity of cathodic biofilm and protein content (about 0.47 mg·cm-2) in all groups. The analysis of the community structure of cathodic biofilm showed that, in the genus level, Acetobacterium, Norank_p_Saccharibacteria, and Thioclava were the dominant species, accounting for 59.6% to 82.1%. There was little difference in the relative abundance of Acetobacterium in all groups (31.3% to 40.1%). However, the relative abundance of norank_p_Saccharibacteria in CA-H, CA-M, CA-L, and CK were 16.1%, 24.6%, 31.1%, and 37.5%, respectively. The carboxyl modified cathode had a great influence on the start-up stage of MESs, which could be a new idea for the rapid start-up of MESs.

2.
Huan Jing Ke Xue ; 40(1): 327-335, 2019 Jan 08.
Article in Chinese | MEDLINE | ID: mdl-30628290

ABSTRACT

The removal efficiencies of environmental pollutants in a microbial electrolysis system (MES) with a biocathode are highly affected by the externally applied voltage. Although the cathode biofilm plays a key role in the pollution removal, its response to the applied voltage is still unknown. A two-chambered MES with a biocathode was constructed to study the impact of the different applied voltages (0.4, 0.5, 0.6, 0.7, and 0.8 V) on the sulfate reduction, extracellular polymer formation, and cathodic bacterial community. The results show that the current output and coulomb and COD removals of the MES are positively correlated with the applied voltage ranging from 0.4 to 0.8 V. The sulfate reduction rate first increases and then decreases with increasing voltage in the MES. The maximum sulfate reductive rate[78.9 g·(m3·d)-1] and maximum S2- production (31.9 mg·L-1±2.2 mg·L-1) were achieved at 0.7 V. The highest electron recovery efficiencies of the MES are 41.8%; hydrogen production may be a pathway leading to electron loss. The polysaccharide and protein contents of the cathode biofilm increase with increasing voltage. The cathode biomass at 0.8 V is 70% higher than that at 0.4 V. The high throughput sequencing results show that Proteobacteria and Dsulfovibrio are dominant in the cathodic microbial community at the phylum and genus levels, respectively. The relative abundance of Desulfovibrio shows little variation with the increasing voltage, indicating that Desulfovibrio is of advantage for using the cathode as electron donor for the respiratory metabolism. With the increasing voltage, the distribution of Desulfovibrio at species level indicates that the changes of Desulfovibriox magneticus RS-1 and s_unclassified_g_Desulfovibrio are contrary.


Subject(s)
Bacteria/classification , Electrodes , Electrolysis , Microbiota , Sulfates/analysis , Autotrophic Processes , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL
...