Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 102
Filter
1.
J Genet Genomics ; 2024 May 13.
Article in English | MEDLINE | ID: mdl-38750952

ABSTRACT

G protein-coupled receptors (GPCRs) are the largest family of transmembrane receptors and regulate various physiological and pathological processes. Despite extensive studies, the roles of GPCRs in mouse embryonic stem cells (mESCs) represent a significant data gap. Here, we show that GPR160, a class A member of GPCRs, is dramatically downregulated concurrent with mESC differentiation into embryoid bodies in vitro. Knockdown of GPR160 leads to downregulation of the expression of pluripotency-associated transcription factors and upregulation of the expression of lineage markers, accompanying with the arrest of the mESC cell cycle in the G0/G1 phase. RNA-seq analysis shows that GPR160 participates in the JAK/STAT signaling pathway crucial for maintaining ESC stemness, and the knockdown of GPR160 results in the downregulation of STAT3 phosphorylation level, which in turn is partially rescued by colivelin, a STAT3 activator. Constant with these observations, GPR160 physically interacts with JAK1, and cooperates with leukemia inhibitory factor receptor (LIFR) and gp130 to activate the STAT3 pathway. In summary, our results suggest that GPR160 regulates mESC self-renewal and pluripotency by interacting with the JAK1-LIFR-gp130 complex to mediate the JAK1/STAT3 signaling pathway.

2.
Theriogenology ; 225: 1-8, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38781848

ABSTRACT

An established technology to create cloned animals is through the use of somatic cell nuclear transfer (SCNT), in which reprogramming the somatic cell nucleus to a totipotent state by enucleated oocyte cytoplasm is a necessary process, including telomere length reprogramming. The limitation of this technology; however, is that the live birth rate of offspring produced through SCNT is significantly lower than that of IVF. Whether and how telomere length play a role in the development of cloned animals is not well understood. Only a few studies have evaluated this association in cloned mice, and fewer still in cloned cows. In this study, we investigated the difference in telomere length as well as the abundance of some selected molecules between newborn deceased cloned calves and normal cows of different ages either produced by SCNT or via natural conception, in order to evaluate the association between telomere length and abnormal development of cloned cows. The absolute telomere length and relative mitochondrial DNA (mtDNA) copy number were determined by real-time quantitative PCR (qPCR), telomere related gene abundance by reverse-transcription quantitative PCR (RT-qPCR), and senescence-associated ß-galactosidase (SA-ß-gal) expression by SA-ß-gal staining. The results demonstrate that the newborn deceased SCNT calves had significantly shortened telomere lengths compared to newborn naturally conceived calves and newborn normal SCNT calves. Significantly lower mtDNA copy number, and significantly lower relative abundance of LMNB1 and TERT, higher relative abundance of CDKN1A, and aberrant SA-ß-gal expression were observed in the newborn deceased SCNT calves, consistent with the change in telomere length. These results demonstrate that abnormal telomere shortening, lower mtDNA copy number and abnormal abundance of related genes were specific to newborn deceased SCNT calves, suggesting that abnormally short telomere length may be associated with abnormal development in the cloned calves.

3.
Front Med (Lausanne) ; 11: 1379078, 2024.
Article in English | MEDLINE | ID: mdl-38813387

ABSTRACT

Objective: Prior research underscores the significance of paraspinal muscles in maintaining spinal stability. This study aims to investigate the predictive value of paraspinal muscle parameters for the occurrence of new vertebral compression fractures (NVCF) following percutaneous vertebroplasty (PVP) or percutaneous kyphoplasty (PKP) in patients with osteoporotic vertebral compression fractures (OVCF). Methods: Retrospectively collected data from October 2019 to February 2021 (internal validation, n = 235) and March 2021 to November 2021 (external validation, n = 105) for patients with OVCF treated with PVP/PKP at our institution. They were randomly divided into training (188 cases) and validation groups (47 cases) at an 8:2 ratio. Lasso regression and multivariable logistic regression identified independent risk factors in the training set, and a Nomogram model was developed. Accuracy was assessed using receiver operating characteristic curves (ROC), calibration was evaluated with calibration curves and the Hosmer-Lemeshow test, and clinical utility was analyzed using decision curve analysis (DCA) and clinical impact curve (CIC). Results: Surgical approach, spinal computed tomography (CT) values, and multifidus skeletal muscle index (SMI) are independent predictors of postoperative NVCF in OVCF patients. A Nomogram model, based on the identified predictors, was developed and uploaded online. Internal validation results showed area under the curve (AUC) values of 0.801, 0.664, and 0.832 for the training set, validation set, and external validation, respectively. Hosmer-Lemeshow goodness-of-fit tests (χ2 = 7.311-14.474, p = 0.070-0.504) and calibration curves indicated good consistency between observed and predicted values. DCA and CIC demonstrated clinical net benefit within risk thresholds of 0.06-0.84, 0.12-0.23, and 0.01-0.27. At specificity 1.00-0.80, the partial AUC (0.106) exceeded that at sensitivity 1.00-0.80 (0.062). Conclusion: Compared to the spinal CT value, the multifidus SMI has certain potential in predicting the occurrence of NVCF. Additionally, the Nomogram model of this study has a greater negative predictive value.

4.
Nat Chem Biol ; 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38553609

ABSTRACT

Cytosine base editors (CBEs) are effective tools for introducing C-to-T base conversions, but their clinical applications are limited by off-target and bystander effects. Through structure-guided engineering of human APOBEC3A (A3A) deaminase, we developed highly accurate A3A-CBE (haA3A-CBE) variants that efficiently generate C-to-T conversion with a narrow editing window and near-background level of DNA and RNA off-target activity, irrespective of methylation status and sequence context. The engineered deaminase domains are compatible with PAM-relaxed SpCas9-NG variant, enabling accurate correction of pathogenic mutations in homopolymeric cytosine sites through flexible positioning of the single-guide RNAs. Dual adeno-associated virus delivery of one haA3A-CBE variant to a mouse model of tyrosinemia induced up to 58.1% editing in liver tissues with minimal bystander editing, which was further reduced through single dose of lipid nanoparticle-based messenger RNA delivery of haA3A-CBEs. These results highlight the tremendous promise of haA3A-CBEs for precise genome editing to treat human diseases.

5.
BMC Cardiovasc Disord ; 24(1): 99, 2024 Feb 10.
Article in English | MEDLINE | ID: mdl-38341562

ABSTRACT

OBJECTIVE: This study endeavors to examine the feasibility of predicting the clinical outcomes of patients suffering from peripheral artery disease (PAD) who undergo endovascular intervention, by employing the Syngo iFlow technology. METHODS: Retrospectively enrolling 76 patients from December 2021 to May 2023, yielding a total of 77 affected limbs, this study employs clinical outcomes (improvement or otherwise) as the gold standard. Two physicians conducted visual assessments on both DSA and iFlow images to gauge patient improvement and assessed inter-observer consistency for each image modality. The Time to Peak (TTP) of regions of interest (ROI) at the femoral head, knee joint, and ankle joint was measured. Differences in pre- and post-procedure TTP were juxtaposed, and statistically significant parameter cutoff values were identified via ROC analysis. Employing these cutoffs for TTP classification, multivariate logistic regression and the C-statistic were utilized to assess the predictive value of distinct parameters for clinical success. RESULTS: Endovascular procedure exhibited technical and clinical success rates of 82.58 and 75.32%, respectively. Diagnostic performance of iFlow image visual assessment surpassed that of DSA images. Inter-observer agreement for iFlow and DSA image evaluations was equivalent (κ = 0.48 vs 0.50). Post-classification using cutoff values, multivariate logistic regression demonstrated the statistical significance of ankle joint TTP in post-procedure iFlow images of the endovascular procedure for clinical success evaluation (OR 7.21; 95% CI 1.68, 35.21; P = 0.010), with a C-statistic of 0.612. CONCLUSION: Syngo iFlow color-encoded imagery holds practical value in assessing the technical success of post-endovascular procedures, offering comprehensive lower limb arterial perfusion visualization. Its quantifiable parameters exhibit promising potential for prognosticating clinical success.


Subject(s)
Endovascular Procedures , Peripheral Arterial Disease , Humans , Feasibility Studies , Retrospective Studies , Peripheral Arterial Disease/diagnostic imaging , Peripheral Arterial Disease/therapy , Endovascular Procedures/adverse effects , Hemodynamics , Treatment Outcome
6.
Mol Biotechnol ; 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38300454

ABSTRACT

Lentiviral vector (LVV) has been used as one of the common carriers for gene therapy in clinical trials. LVV-mediated clinical trials have being reported in successfully treating hundreds of ß-thalassemia cases. These LVVs bear an inversely placed ß-hemoglobin (HBB) gene expression cassette for preserving introns during the viral RNA packaging. Consequently, these LVVs often produce a small amount of negatively orientated transcript driven by its internal gene promoter and would lower the viral titer by the minus-strand complemented with the viral backbone. To overcome this problem, we designed shRNAs specifically target the minus-strand RNA driven by the LVV internal promoter that resulted in a notable increase in the viral titer. This report demonstrates a simple and positive mean for increasing the effectiveness for gene therapy with the LVV system.

7.
J Sci Food Agric ; 104(5): 2574-2586, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-37851503

ABSTRACT

BACKGROUND: The investigation of UV-induced fluorescence imaging coupled with machine learning was conducted to non-destructively detect the total volatile basic nitrogen (TVB-N) of frozen-whole-round tilapia (FWRT) during freezing and thawing. The UV-induced fluorescence images of FWRT at the wavelength of 365 nm were acquired by self-developed fluorescence image acquisition system. In total, 169 color and texture features based on RGB, hue-saturation-intensity and L*a*b* color spaces and gray level co-occurrence matrix were extracted, respectively. Successive projections algorithm (SPA) was employed to select the optimal 16 features to achieve feature dimension reduction modeling. With full and extracted features as input, the models of partial least squares regression (PLSR), least-squares support vector machine (LSSVM) and convolutional neural network (CNN) were established for TVB-N prediction. RESULTS: Results indicated that the full features-based CNN performed better than SPA based prediction models (SPA-PLSR and SPA-LSSVM). The CNN model was determined to be the optimal with an RP2 value of 0.9779, RMSEP value of 1.1502 × 10-2 g N kg-1 and RPD value of 6.721 for TVB-N content predictiin. CONCLUSION: The CNN method based on UV fluorescence imaging technology has potential for quality and safety detection of FWRT. © 2023 Society of Chemical Industry.


Subject(s)
Tilapia , Animals , Nitrogen , Freezing , Neural Networks, Computer , Algorithms , Least-Squares Analysis
8.
J Gene Med ; 26(1): e3640, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37989259

ABSTRACT

BACKGROUND: LentiGlobin BB305 is a self-inactivating lentiviral vector carrying a human ß-globin expressing cassette for treating ß-thalassemia. Initially, a 2 × 250 bp chicken Locus Control Region fragment of cHS4, functioning as an insulator, was placed at its ΔU3, which was removed after the first clinical trial led by a French team to avoid abnormal splicing, etc. This action could potentially lead to an increasing risk of the transcriptional read-through rate driven by the ß-globin promoter to a significant level, posing a biosafety risk in clinical trials. METHODS: In the present study, a read-through reducing agent (C-U+ or WPRE) was designed to be placed at the 3' UTR of the ß-globin gene. The Enhancer Activities and/or Transcriptional Read-Through (EATRT) rate at the mRNA level and the protein expression level regarding lentiviral preparation titer were examined. RESULTS: We found that the insertion of the element (C-U+ or WPRE) reduced the EATRT effectively by 53% or 41%, respectively. C-U+ has less impact on virus package efficiency. Furthermore, there was no significant difference in the protein expression level after the C-U+ or WPRE insertion. CONCLUSIONS: The results of the present study show that inserting C-U+ or WPRE before the polyA sequence of the BB305 would reduce the EATRT rate at no cost of its expressing efficacy and viral preparation titers. Thus, we present an alternative improvement for a safer lentiviral vector for ß-thalassemia clinical trials.


Subject(s)
beta-Thalassemia , Humans , beta-Thalassemia/genetics , beta-Thalassemia/therapy , Lentivirus/genetics , Genetic Vectors/genetics , Genetic Therapy/methods , beta-Globins/genetics
9.
Stem Cells ; 42(3): 278-289, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38134938

ABSTRACT

ß-thalassemia is an inherited blood disease caused by reduced or inadequate ß-globin synthesis due to ß-globin gene mutation. Our previous study developed a gene-edited mice model (ß654-ER mice) by CRISPR/Cas9-mediated genome editing, targeting both the ßIVS2-654 (C > T) mutation site and the 3' splicing acceptor site at 579 and corrected abnormal ß-globin mRNA splicing in the ß654-thalassemia mice. Herein, we further explored the therapeutic effect of the hematopoietic stem cells (HSCs) from ß654-ER mice on ß-thalassemia by consecutive HSC transplantation. The results indicated that HSC transplantation derived from gene-edited mice can significantly improve the survival rate of mice after lethal radiation doses and effectively achieve hematopoietic reconstruction and long-term hematopoiesis. Clinical symptoms, including hematologic parameters and tissue pathology of transplanted recipients, were significantly improved compared to the non-transplanted ß654 mice. The therapeutic effect of gene-edited HSC transplantation demonstrated no significant difference in hematological parameters and tissue pathology compared with wild-type mouse-derived HSCs. Our data revealed that HSC transplantation from gene-edited mice completely recovered the ß-thalassemia phenotype. Our study systematically investigated the therapeutic effect of HSCs derived from ß654-ER mice on ß-thalassemia and further confirmed the efficacy of our gene-editing approach. Altogether, it provided a reference and primary experimental data for the clinical usage of such gene-edited HSCs in the future.


Subject(s)
Hematopoietic Stem Cell Transplantation , Thalassemia , beta-Thalassemia , Mice , Animals , beta-Thalassemia/genetics , beta-Thalassemia/therapy , Gene Editing , Hematopoietic Stem Cells , beta-Globins/genetics
10.
Life (Basel) ; 13(11)2023 Nov 02.
Article in English | MEDLINE | ID: mdl-38004297

ABSTRACT

Hematopoietic stem cells (HSCs) are stem cells that can differentiate into various blood cells and have long-term self-renewal capacity. At present, HSC transplantation is an effective therapeutic means for many malignant hematological diseases, such as aplastic hematological diseases and autoimmune diseases. The hematopoietic microenvironment affects the proliferation, differentiation, and homeostasis of HSCs. The regulatory effect of the hematopoietic microenvironment on HSCs is complex and has not been thoroughly studied yet. In this study, we focused on mononuclear cells (MNCs), which provided an important microenvironment for HSCs and established a methodological system for identifying cellular composition by means of multiple technologies and methods. First, single-cell RNA sequencing (scRNA-seq) technology was used to investigate the cellular composition of cells originating from different microenvironments during different stages of hematopoiesis, including mouse fetal liver mononuclear cells (FL-MNCs), bone marrow mononuclear cells (BM-MNCs), and in vitro-cultured fetal liver stromal cells. Second, bioinformatics analysis showed a higher proportion and stronger proliferation of the HSCs in FL-MNCs than those in BM-MNCs. On the other hand, macrophages in in vitro-cultured fetal liver stromal cells were enriched to about 76%. Differential gene expression analysis and Gene Ontology (GO) functional enrichment analysis demonstrated that fetal liver macrophages have strong cell migration and actin skeleton formation capabilities, allowing them to participate in the hematopoietic homeostasis through endocytosis and exocytosis. Last, various validation experiments such as quantitative real-time PCR (qRT-PCR), ELISA, and confocal image assays were performed on randomly selected target genes or proteins secreted by fetal liver macrophages to further demonstrate the potential relationship between HSCs and the cells inhabiting their microenvironment. This system, which integrates multiple methods, could be used to better understand the fate of these specific cells by determining regulation mechanism of both HSCs and macrophages and could also be extended to studies in other cellular models.

11.
Front Mol Neurosci ; 16: 1137123, 2023.
Article in English | MEDLINE | ID: mdl-37396785

ABSTRACT

Introduction: Down syndrome (DS) is the most common genetic condition that causes intellectual disability in humans. The molecular mechanisms behind the DS phenotype remain unclear. Therefore, in this study, we present new findings on its molecular mechanisms through single-cell RNA sequencing. Methods: Induced pluripotent stem cells (iPSCs) from the patients with DS and the normal control (NC) patients were differentiated into iPSCs-derived neural stem cells (NSCs). Single-cell RNA sequencing was performed to achieve a comprehensive single-cell level differentiation roadmap for DS-iPSCs. Biological experiments were also performed to validate the findings. Results and Discussion: The results demonstrated that iPSCs can differentiate into NSCs in both DS and NC samples. Furthermore, 19,422 cells were obtained from iPSC samples (8,500 cells for DS and 10,922 cells for the NC) and 16,506 cells from NSC samples (7,182 cells for DS and 9,324 cells for the NC), which had differentiated from the iPSCs. A cluster of DS-iPSCs, named DS-iPSCs-not differentiated (DSi-PSCs-ND), which had abnormal expression patterns compared with NC-iPSCs, were demonstrated to be unable to differentiate into DS-NSCs. Further analysis of the differentially expressed genes revealed that inhibitor of differentiation family (ID family) members, which exhibited abnormal expression patterns throughout the differentiation process from DS-iPSCs to DS-NSCs, may potentially have contributed to the neural differentiation of DS-iPSCs. Moreover, abnormal differentiation fate was observed in DS-NSCs, which resulted in the increased differentiation of glial cells, such as astrocytes, but decreased differentiation into neuronal cells. Furthermore, functional analysis demonstrated that DS-NSCs and DS-NPCs had disorders in axon and visual system development. The present study provided a new insight into the pathogenesis of DS.

12.
Pharmacol Res ; 192: 106786, 2023 06.
Article in English | MEDLINE | ID: mdl-37146924

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) encompasses a spectrum of disease phenotypes which start with simple steatosis and lipid accumulation in the hepatocytes - a typical histological lesions characteristic. It may progress to non-alcoholic steatohepatitis (NASH) that is characterized by hepatic inflammation and/or fibrosis and subsequent onset of NAFLD-related cirrhosis and hepatocellular carcinoma (HCC). Due to the central role of the liver in metabolism, NAFLD is regarded as a result of and contribution to the metabolic abnormalities seen in the metabolic syndrome. Peroxisome proliferator-activated receptors (PPARs) has three subtypes, which govern the expression of genes responsible for energy metabolism, cellular development, inflammation, and differentiation. The agonists of PPARα, such as fenofibrate and clofibrate, have been used as lipid-lowering drugs in clinical practice. Thiazolidinediones (TZDs) - ligands of PPARγ, such as rosiglitazone and pioglitazone, are also used in the treatment of type 2 diabetes (T2D) with insulin resistance (IR). Increasing evidence suggests that PPARß/δ agonists have potential therapeutic effects in improving insulin sensitivity and lipid metabolism disorders. In addition, PPARs ligands have been considered as potential therapeutic drugs for hypertension, atherosclerosis (AS) or diabetic nephropathy. Their crucial biological roles dictate the significance of PPARs-targeting in medical research and drug discovery. Here, it reviews the biological activities, ligand selectivity and biological functions of the PPARs family, and discusses the relationship between PPARs and the pathogenesis of NAFLD and metabolic syndrome. This will open new possibilities for PPARs application in medicine, and provide a new idea for the treatment of fatty liver and related diseases.


Subject(s)
Carcinoma, Hepatocellular , Diabetes Mellitus, Type 2 , Liver Neoplasms , Metabolic Syndrome , Non-alcoholic Fatty Liver Disease , Humans , Non-alcoholic Fatty Liver Disease/metabolism , Diabetes Mellitus, Type 2/metabolism , Metabolic Syndrome/metabolism , Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/metabolism , Liver/metabolism , PPAR alpha/metabolism , Inflammation/metabolism , Lipids/therapeutic use
13.
Clin Genet ; 103(6): 663-671, 2023 06.
Article in English | MEDLINE | ID: mdl-36999564

ABSTRACT

Limb-girdle muscular dystrophy recessive 1 (LGMDR1), previously known as LGMD2A, is a specific LGMD caused by a gene mutation encoding the calcium-dependent neutral cysteine protease calpain-3 (CAPN3). In our study, the compound heterozygosity with two missense variants c.635 T > C (p.Leu212Pro) and c.2120A > G (p.Asp707Gly) was identified in patients with LGMDR1. However, the pathogenicity of c.635 T > C has not been investigated. To evaluate the effects of this novel likely pathogenic variant to the motor system, the mouse model with c.635 T > C variant was prepared by CRISPR/Cas9 gene editing technique. The pathological results revealed that a limited number of inflammatory cells infiltrated the endomyocytes of certain c.635 T > C homozygous mice at 10 months of age. Compared with wild-type mice, motor function was not significantly impaired in Capn3 c. 635 T > C homozygous mice. Western blot and immunofluorescence assays further indicated that the expression levels of the Capn3 protein in muscle tissues of homozygous mice were similar to those of wild-type mice. However, the arrangement and ultrastructural alterations of the mitochondria in the muscular tissues of homozygous mice were confirmed by electron microscopy. Subsequently, muscle regeneration of LGMDR1 was simulated using cardiotoxin (CTX) to induce muscle necrosis and regeneration to trigger the injury modification process. The repair of the homozygous mice was significantly worse than that of the control mice at day 15 and day 21 following treatment, the c.635 T > C variant of Capn3 exhibited a significant effect on muscle regeneration of homozygous mice and induced mitochondrial damage. RNA-sequencing results demonstrated that the expression levels of the mitochondrial-related functional genes were significantly downregulated in the mutant mice. Taken together, the results of the present study strongly suggested that the LGMDR1 mouse model with a novel c.635 T > C variant in the Capn3 gene was significantly dysfunctional in muscle injury repair via impairment of the mitochondrial function.


Subject(s)
Muscular Dystrophies, Limb-Girdle , Mutation, Missense , Humans , Animals , Mice , Muscle Proteins/genetics , Muscle, Skeletal/pathology , Muscular Dystrophies, Limb-Girdle/genetics , Mutation , Calpain/genetics , Disease Models, Animal
14.
Mol Cells ; 46(4): 219-230, 2023 Apr 30.
Article in English | MEDLINE | ID: mdl-36625318

ABSTRACT

Down syndrome (DS) is the most common autosomal aneuploidy caused by trisomy of chromosome 21. Previous studies demonstrated that DS affected mitochondrial functions, which may be associated with the abnormal development of the nervous system in patients with DS. Runt-related transcription factor 1 (RUNX1) is an encoding gene located on chromosome 21. It has been reported that RUNX1 may affect cell apoptosis via the mitochondrial pathway. The present study investigated whether RUNX1 plays a critical role in mitochondrial dysfunction in DS and explored the mechanism by which RUNX1 affects mitochondrial functions. Expression of RUNX1 was detected in induced pluripotent stem cells of patients with DS (DS-iPSCs) and normal iPSCs (N-iPSCs), and the mitochondrial functions were investigated in the current study. Subsequently, RUNX1 was overexpressed in N-iPSCs and inhibited in DS-iPSCs. The mitochondrial functions were investigated thoroughly, including reactive oxygen species levels, mitochondrial membrane potential, ATP content and lysosomal activity. Finally, RNA-sequencing was used to explore the global expression pattern. It was observed that the expression levels of RUNX1 in DS-iPSCs were significantly higher than those in normal controls. Impaired mitochondrial functions were observed in DS-iPSCs. Of note, overexpression of RUNX1 in N-iPSCs resulted in mitochondrial dysfunction, while inhibition of RUNX1 expression could improve the mitochondrial function in DS-iPSCs. Global gene expression analysis indicated that overexpression of RUNX1 may promote the induction of apoptosis in DS-iPSCs by activating the PI3K/Akt signaling pathway. The present findings indicate that abnormal expression of RUNX1 may play a critical role in mitochondrial dysfunction in DS-iPSCs.


Subject(s)
Down Syndrome , Induced Pluripotent Stem Cells , Humans , Proto-Oncogene Proteins c-akt/metabolism , Induced Pluripotent Stem Cells/metabolism , Core Binding Factor Alpha 2 Subunit/genetics , Phosphatidylinositol 3-Kinases/metabolism , Down Syndrome/metabolism , Cell Differentiation/genetics , Up-Regulation , Mitochondria/metabolism
15.
Front Genet ; 13: 1004307, 2022.
Article in English | MEDLINE | ID: mdl-36568392

ABSTRACT

Dopa-responsive dystonia (DRD), also known as Segawa syndrome, is a rare neurotransmitter disease. The decrease in dopamine caused by tyrosine hydroxylase (TH) gene mutation may lead to dystonia, tremor and severe encephalopathy in children. Although the disease caused by recessive genetic mutation of the tyrosine hydroxylase (TH) gene is rare, we found that the clinical manifestations of seven children with tyrosine hydroxylase gene mutations are similar to dopa-responsive dystonia. To explore the clinical manifestations and possible pathogenesis of the disease, we analyzed the clinical data of seven patients. Next-generation sequencing showed that the TH gene mutation in three children was a reported homozygous mutation (c.698G>A). At the same time, two new mutations of the TH gene were found in other children: c.316_317insCGT, and c.832G>A (p.Ala278Thr). We collected venous blood from four patients with Segawa syndrome and their parents for real-time quantitative polymerase chain reaction analysis of TH gene expression. We predicted the structure and function of proteins on the missense mutation iterative thread assembly refinement (I-TASSER) server and studied the conservation of protein mutation sites. Combined with molecular biology experiments and related literature analysis, the qPCR results of two patients showed that the expression of the TH gene was lower than that in 10 normal controls, and the expression of the TH gene of one mother was lower than the average expression level. We speculated that mutation in the TH gene may clinically manifest by affecting the production of dopamine and catecholamine downstream, which enriches the gene pool of Segawa syndrome. At the same time, the application of levodopa is helpful to the study, diagnosis and treatment of Segawa syndrome.

16.
Genes (Basel) ; 13(9)2022 08 29.
Article in English | MEDLINE | ID: mdl-36140726

ABSTRACT

Pathogenic variants of zinc finger C4H2-type containing (ZC4H2) on the X chromosome cause a group of genetic diseases termed ZC4H2-associated rare disorders (ZARD), including Wieacker-Wolff Syndrome (WRWF) and Female-restricted Wieacker-Wolff Syndrome (WRWFFR). In the current study, a de novo c.352C>T (p.Gln118*) mutation in ZC4H2 (NM_018684.4) was identified in a female neonate born with severe arthrogryposis multiplex congenita (AMC) and Pierre-Robin sequence (cleft palate and micrognathia). Plasmids containing the wild-type (WT), mutant-type (MT) ZC4H2, or GFP report gene (N) were transfected in 293T cell lines, respectively. RT-qPCR and western blot analysis showed that ZC4H2 protein could not be detected in the 293T cells transfected with MT ZC4H2. The RNA seq results revealed that the expression profile of the MT group was similar to that of the N group but differed significantly from the WT group, indicating that the c.352C>T mutation resulted in the loss of function of ZC4H2. Differentially expressed genes (DEGs) enrichment analysis showed that c.352C>T mutation inhibited the expression levels of a series of genes involved in the oxidative phosphorylation pathway. Subsequently, expression levels of ZC4H2 were knocked down in neural stem cells (NSCs) derived from induced pluripotent stem cells (iPSCs) by lentiviral-expressed small hairpin RNAs (shRNAs) against ZC4H2. The results also demonstrated that decreasing the expression of ZC4H2 significantly reduced the growth of NSCs by affecting the expression of genes related to the oxidative phosphorylation signaling pathway. Taken together, our results strongly suggest that ZC4H2 c.352C>T (p.Gln118*) mutation resulted in the loss of protein function and caused WRWFFR.


Subject(s)
Codon, Nonsense , Nuclear Proteins , Animals , Apraxias , Carrier Proteins/genetics , Contracture , Female , Genetic Diseases, X-Linked , Intracellular Signaling Peptides and Proteins/genetics , Muscular Atrophy , Nuclear Proteins/genetics , Ophthalmoplegia , Phenotype
17.
Cell Prolif ; 55(10): e13298, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35906841

ABSTRACT

OBJECTIVES: Mesoderm, derived from a new layer between epiblast and hypoblast during gastrulation, can differentiate into various tissues, including muscles, bones, kidneys, blood, and the urogenital system. However, systematic elucidation of mesoderm characteristics and specific markers remains a challenge. This study aims to screen and identify candidate genes important for mesoderm development. MATERIALS AND METHODS: Cells originating from the three germ layers were obtained by laser capture microdissection, followed by microcellular RNA sequencing. Mesoderm-specific differentially expressed genes (DEGs) were identified by using a combination of three bioinformatics pipelines. Candidate mesoderm-specific genes expression were verified by real-time quantitative polymerase chain reaction analysis and immunohistochemistry. Functional analyses were verified by ESCs-EBs differentiation and colony-forming units (CFUs) assay. RESULTS: A total of 1962 differentially expressed mesoderm genes were found, out of which 50 were candidate mesoderm-specific DEGs which mainly participate in somite development, formation of the primary germ layer, segmentation, mesoderm development, and pattern specification process by GO analysis. Representative genes Cdh2, Cdh11, Jag1, T, Fn-1, and Pcdh7 were specifically expressed in mesoderm among the three germ layers. Pcdh7 as membrane-associated gene has hematopoietic-relevant functions identified by ESCs-EBs differentiation and CFUs assay. CONCLUSIONS: Spatial transcriptomic profiling with multi-method analysis and confirmation revealed candidate mesoderm progenitors. This approach appears to be efficient and reliable and can be extended to screen and validate candidate genes in various cellular systems.


Subject(s)
Mesoderm , Transcriptome , Cell Differentiation/genetics , Embryonic Development , Genomics , Transcriptome/genetics
18.
Food Res Int ; 156: 111174, 2022 06.
Article in English | MEDLINE | ID: mdl-35651036

ABSTRACT

The accurate control of moisture content (MC) during the processing of sea cucumber is beneficial to improve the taste of sea cucumber and maintain its nutritional value, which is directly related to the quality and shelf life of sea cucumber. The purpose of this study is to explore the feasibility using deep learning (DL) to realize rapid nondestructive detection of MC in salted sea cucumbers based on hyperspectral imaging (HSI) and low field nuclear magnetic resonance (LF-NMR) data. Firstly, three Cuckoo Search (CS) dimensionality reduction algorithms (Traditional-CS, Binary-CS and Chaotic-CS) were combined with DL framework respectively using HSI and LF-NMR data to establish prediction models, which proved the feasibility of DL framework in predicting the MC of sea cucumbers, and Chaotic-CS algorithm was selected as the optimal dimensionality reduction algorithm. Then, the MC visualization based on HSI and LF-NMR data was realized respectively to detect the migration and decrease of MC. Finally, using both HSI and LF-NMR data, the advantages of the models based on Fusion-net DL (FDL) framework were discussed, which showed better performance than the single-data models, with RC2 of 0.9929, RMSEC of 0.0016, RP2 of 0.9936 and RPD of 12.5041. In summary, the rapid nondestructive detection of MC in salted sea cucumbers could be realized by HSI and LF-NMR data based on DL framework, and the advantage of data fusion detection based on FDL framework was verified.


Subject(s)
Deep Learning , Sea Cucumbers , Algorithms , Animals , Magnetic Resonance Imaging , Magnetic Resonance Spectroscopy/methods , Sea Cucumbers/chemistry
19.
Stem Cell Res ; 62: 102798, 2022 07.
Article in English | MEDLINE | ID: mdl-35537242

ABSTRACT

Epilepsy of infancy with migrating focal seizures (EIMFS) is a kind of epileptic encephalopathy with high genetic heterogeneity. The most common pathogenic gene for EIMFS is potassium sodium-activated channel subfamily T member 1 (KCNT1). Using Sendai virus-mediated reprogramming, we established an induced pluripotent stem cell (iPSC) line from the peripheral blood mononuclear cells (PBMCs) of a five-month-old Chinese girl with heterozygous missense mutation (c.2800 G>A) in the KCNT1 gene. The iPSCs were stable during amplification, expressed pluripotent genes, maintained a normal karyotype, and showed characteristics of the three germs layers in an in vitro differentiation assay.


Subject(s)
Epilepsy , Induced Pluripotent Stem Cells , Cell Differentiation , China , Electroencephalography , Epilepsy/genetics , Female , Humans , Induced Pluripotent Stem Cells/metabolism , Infant , Leukocytes, Mononuclear/metabolism , Mutation , Mutation, Missense , Nerve Tissue Proteins/metabolism , Potassium Channels, Sodium-Activated , Seizures
20.
Cell Prolif ; 55(6): e13231, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35582855

ABSTRACT

OBJECTIVES: Early embryo development is dependent on the regulation of maternal messages stored in the oocytes during the maternal-to-zygote transition. Previous studies reported variability of oocyte competence among different inbred mouse strains. The present study aimed to identify the maternal transcripts responsible for early embryonic development by comparing transcriptomes from oocytes of high- or low- competence mouse strains. MATERIALS AND METHODS: In vitro fertilization embryos from oocytes of different mouse strains were subject to analysis using microarrays, RNA sequencing, real-time quantitative PCR (RT-qPCR) analysis, Western blotting, and immunofluorescence. One candidate gene, Prkce, was analysed using Prkce knockout mice, followed by a cRNA rescue experiment. RESULTS: The fertilization and 2-cell rate were significantly higher for FVB/NJ (85.1% and 82.0%) and DBA/2J (79.6% and 76.7%) inbred mouse strains than those for the MRL/lpr (39.9% and 35.8%) and 129S3 (35.9% and 36.6%) strains. Thirty-nine differentially expressed genes (DEGs) were noted, of which nine were further verified by RT-qPCR. Prkce knockout mice showed a reduced 2-cell rate (Prkce+/+ 80.1% vs. Prkce-/- 32.4%) that could be rescued by Prkce cRNA injection (2-cell rate reached 76.7%). Global transcriptional analysis revealed 143 DEGs in the knockout mice, which were largely composed of genes functioning in cell cycle regulation. CONCLUSIONS: The transcription level of maternal messages such as Prkce in mature oocytes is associated with different 2-cell rates in select inbred mouse strains. Prkce transcript levels could serve as a potential biomarker to characterize high-quality mature oocytes.


Subject(s)
Embryo, Mammalian/metabolism , Oocytes , Protein Kinase C-epsilon/metabolism , Zygote , Animals , Embryo, Mammalian/cytology , Female , Gene Expression Regulation, Developmental , Mice , Mice, Inbred DBA , Mice, Inbred MRL lpr , Mice, Knockout , Oocytes/metabolism , Pregnancy , RNA, Complementary/metabolism , Zygote/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...