Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Publication year range
1.
Colloids Surf B Biointerfaces ; 240: 113968, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38788472

ABSTRACT

Due to the unique structure, carbon nanomaterials could convert near-infrared (NIR) light into heat efficiently in tumor ablation using photothermal therapy (PTT). However, none of them has been applied in clinical treatment, because they have not been approved for clinical evaluations and the precise temperature control facility is scarce. In this study, we designed a temperature-responsive controller for PTT and used carbon nanoparticles-Fe(II) complex (CNSI-Fe) as photothermal conversion agent (PTA) for PTT of tumor in vitro and in vivo. CNSI-Fe was an innovative drug under the evaluations in clinical trials. CNSI-Fe showed excellent photothermal conversion ability in water to increase the water temperature by 40 °C within 5 min under irradiation of 808 nm laser at 0.5 W/cm2. The temperature was precisely controlled at 52 °C for both in vitro and in vivo tumor inhibition. CNSI-Fe with NIR irradiation showed higher tumor cell inhibition than CNSI. In tumor bearing mice, CNSI-Fe with NIR irradiation achieved an inhibition rate of 84.7 % and 71.4 % of them were completely cured. Mechanistically, CNSI-Fe under NIR irradiation induced the radical generation, oxidative damage and ferroptosis to kill tumor. In addition, CNSI-Fe showed good biosafety during PTT according to hematological, serum biological and histopathological examinations. These results indicated that the combination of chemotherapy and PTT provided higher antitumor efficiency using CNSI-Fe as PTA.


Subject(s)
Carbon , Nanoparticles , Photothermal Therapy , Animals , Carbon/chemistry , Mice , Nanoparticles/chemistry , Humans , Mice, Nude , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Mice, Inbred BALB C , Infrared Rays , Ferrous Compounds/chemistry , Ferrous Compounds/pharmacology , Cell Survival/drug effects , Cell Proliferation/drug effects , Cell Line, Tumor , Particle Size , Drug Screening Assays, Antitumor
2.
ACS Appl Mater Interfaces ; 12(26): 29094-29102, 2020 Jul 01.
Article in English | MEDLINE | ID: mdl-32510916

ABSTRACT

The Fe element is essential for human beings, but overdose of Fe leads to unwanted toxicity. However, overwhelming Fe accumulation in tumor cells could arouse strong oxidative stress for cancer therapy. Therefore, the fast and specific accumulation of Fe in tumor cells without systemic toxicity is critical for this purpose. Herein, we report that a carbon nanoparticles-Fe(II) complex (CNSI-Fe) could efficiently load Fe into tumor cells and inhibit tumor growth with low toxicity in H22 tumor-bearing mice. Upon intratumoral injection, CNSI-Fe only induced meaningful Fe increase in the tumor to significantly inhibit tumor growth with competitive efficiency to cis-dichlorodiammineplatinum(II). Fe accumulation stimulated the hydroxyl radical generation and serious oxidative stress in the tumor. Due to the lack of Fe accumulation in other tissues, CNSI-Fe was of low systemic toxicity to tumor-bearing mice. With the clinical success of CNSI for decades, CNSI-Fe might be used for cancer therapy through "off label" use to benefit patients immediately.


Subject(s)
Carbon/chemistry , Nanoparticles/chemistry , Animals , Cisplatin/chemistry , Humans , Hydroxyl Radical/chemistry , Iron/metabolism , Mice , Oxidative Stress/drug effects , Oxidative Stress/physiology
3.
MedComm (2020) ; 1(2): 202-210, 2020 Sep.
Article in English | MEDLINE | ID: mdl-34766118

ABSTRACT

Due to the unique structure, carbon nanomaterials could convert near-infrared (NIR) light into heat efficiently in tumor ablation using photothermal therapy (PTT). Carbon nanoparticles suspension injection (CNSI) is a commercial imaging reagent for lymph node mapping. CNSI has similar structural characteristics to other carbon nanomaterials, and thus, might be applied as photothermal agent. Herein, we evaluated the photothermal conversion ability and therapeutic effects of CNSI on thyroid carcinoma. CNSI was composed by carbon nanoparticle cores and polyvinylpyrrolidone K30 as the dispersion reagent. CNSI absorbed NIR light efficiently following the Lambert-Beer law. The temperature of CNSI dispersion increased quickly under the NIR irradiation. CNSI killed the TCP-1 thyroid carcinoma cells under 808 nm laser irradiation at 0.5 W/cm2, while CNSI or NIR irradiation treatment alone did not demonstrate this effect. Temperature increases were observed in tumor injected with CNSI under NIR irradiation. After three irradiation treatments, the tumor growth was completely blocked and the disruption of cellular structure was observed. When the tumor temperatures reached 53°C during treatment, the tumors did not recur within the observation period of 3 months. Our results suggested that CNSI might be used for PTT through "off label" use to benefit the patients immediately.

4.
Mater Sci Eng C Mater Biol Appl ; 92: 416-423, 2018 Nov 01.
Article in English | MEDLINE | ID: mdl-30184767

ABSTRACT

Drug delivery systems for doxorubicin (DOX) have attracted tremendous interest nowadays for the improved efficacy and/or reduced toxicity. Due to the aromatic structures and hydrophobic domains, carbon nanoparticle suspension injection (CNSI), a clinical applied reagent for lymph node mapping, strongly adsorbs DOX and holds great potential in cancer therapy. Herein, we evaluated the therapeutic effects of CNSI-DOX to establish its delivery applications for cancer drugs. CNSI adsorbed DOX from solution quickly after the mixing, and the release of DOX from CNSI followed a pH-dependent way. CNSI-DOX and free DOX had nearly identical inhibitive effects on cancer cells, while the vehicle CNSI was nontoxic. CNSI-DOX largely prolonged the life span of ascites tumor bearing mice after the intraperitoneally injection and the ascites weights showed significant decreases. CNSI-DOX also inhibited the growth of subcutaneous xenografts following the same administration route. The therapeutic efficacy of CNSI-DOX was similar to that of free DOX in ascites tumor model, but slightly lower in subcutaneous xenografts model. The advantage of using CNSI was majorly reflected by the reduced toxicity of DOX according to the bodyweight changes, serum biochemical indicators and histopathological observations. The LD50 (median lethal dose) value of CNSI-DOX was 43.8 mg/kg bodyweight, nearly three times of that of free DOX (15.2 mg/kg bodyweight). Our results suggested that CNSI might be used for DOX delivery through "off label" use to benefit the patients immediately.


Subject(s)
Carbon , Doxorubicin , Drug Delivery Systems/methods , Nanoparticles , Neoplasms, Experimental/drug therapy , Carbon/chemistry , Carbon/pharmacokinetics , Carbon/pharmacology , Doxorubicin/chemistry , Doxorubicin/pharmacokinetics , Doxorubicin/pharmacology , HeLa Cells , Humans , MCF-7 Cells , Nanoparticles/chemistry , Nanoparticles/therapeutic use , Neoplasms, Experimental/metabolism , Neoplasms, Experimental/pathology
5.
Int J Nanomedicine ; 12: 4891-4899, 2017.
Article in English | MEDLINE | ID: mdl-28744123

ABSTRACT

Carbon nanoparticles (CNPs) have been widely used in tumor drainage lymph node (TDLN) imaging, drug delivery, photothermal therapy, and so on. However, during the theranostic applications, the accumulation efficiency of CNPs in target organs is unknown yet, which largely hinders the extension of CNPs into clinical uses. Herein, we prepared skeleton-labeled 13C-CNPs that had identical properties to commercial CNPs suspension injection (CNSI) for the imaging and quantification in TDLN. 13C-CNPs were prepared by arc discharge method, followed by homogenization with polyvinylpyrrolidone. The size distribution and morphology of 13C-CNPs were nearly the same as those of CNSI under transmission electron microscope. The hydrodynamic radii of both 13C-CNPs and CNSI were similar, too. According to X-ray photoelectron spectroscopy and infrared spectroscopy analyses, the chemical compositions and chemical states of elements were also nearly identical for both labeled and commercial forms. The skeleton labeling of 13C was reflected by the shift of G-band toward lower frequency in Raman spectra. 13C-CNPs showed competitive performance in TDLN imaging, where the three lymph nodes (popliteal lymph node, common iliac artery lymph node, and paraaortic lymph node) were stained black upon the injection into the hind extremity of mice. The direct quantification of 13C-CNPs indicated that 877 µg/g of 13C-CNPs accumulated in the first station of TDLN (popliteal lymph node). The second station of TDLN (common iliac artery lymph node) had even higher accumulation level (1,062 µg/g), suggesting that 13C-CNPs migrated efficiently along lymphatic vessel. The value decreased to 405 µg/g in the third station of TDLN (paraaortic lymph node). Therefore, the 13C-CNPs provided quantitative approach to image and quantify CNSI in biological systems. The implication in biomedical applications and biosafety evaluations of CNSI is discussed.


Subject(s)
Carbon Isotopes/chemistry , Lymph Nodes/diagnostic imaging , Mass Spectrometry/methods , Nanoparticles/chemistry , Animals , Iliac Artery/diagnostic imaging , Iliac Artery/pathology , Lymph Nodes/pathology , Male , Mice, Inbred ICR , Neoplasms/pathology , Photoelectron Spectroscopy , Spectrum Analysis, Raman , Suspensions
6.
Guang Pu Xue Yu Guang Pu Fen Xi ; 24(2): 152-4, 2004 Feb.
Article in Chinese | MEDLINE | ID: mdl-15769003

ABSTRACT

Infrared spectra of 2-alkyl-7,7,8,8-tetracyanoquinodimethane (C12H25 TCNQ, C15H31 TCNQ, C18H37 TCNQ) were measured with the resolution of 1 and 4 cm(-1). In order to identify the peak number correctly in the CH2 stretching region, second derivative and Fourier self-deconvolution were applied to the infrared spectra, respectively. The overlapping bands in the CH2 stretching region could be identified when the infrared spectra, which were measured with the resolution of 4 cm(-1), were dealt with by Fourier self-deconvolution. However, the bands overlapped in the CH2 symmetric stretching region could not be observed when these infrared spectra were dealt with by second derivative. The above results reveal that Fourier self-deconvolution method is more powerful than second derivative in identifying bands that are involved in an overlapping band feature.


Subject(s)
Nitriles/analysis , Spectrophotometry, Infrared/methods , Spectroscopy, Fourier Transform Infrared/methods , Models, Chemical , Spectrum Analysis, Raman/methods , Spin Labels/chemical synthesis
SELECTION OF CITATIONS
SEARCH DETAIL
...