Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Biomater ; 156: 21-36, 2023 01 15.
Article in English | MEDLINE | ID: mdl-36002128

ABSTRACT

Viscoelastic hydrogels can enhance 3D cell migration and proliferation due to the faster stress relaxation promoting the arrangement of the cellular microenvironment. However, most synthetic photocurable hydrogels used as bioink materials for 3D bioprinting are typically elastic. Developing a photocurable hydrogel bioink with fast stress relaxation would be beneficial for 3D bioprinting engineered 3D skeletal muscles in vitro and repairing volumetric muscle loss (VML) in vivo; however, this remains an ongoing challenge. This study aims to develop an interpenetrating network (IPN) hydrogel with tunable stress relaxation using a combination of gelatin methacryloyl (GelMA) and fibrinogen. These IPN hydrogels with faster stress relaxation showed higher 3D cellular proliferation and better differentiation. A 3D anisotropic biomimetic scaffold was further developed via a printing gel-in-gel strategy, where the extrusion printing of cell-laden viscoelastic FG hydrogel within Carbopol supported gel. The 3D engineered skeletal muscle tissue was further developed via 3D aligned myotube formation and contraction. Furthermore, the cell-free 3D printed scaffold was implanted into a rat VML model, and both the short and long-term repair results demonstrated its ability to enhance functional skeletal muscle tissue regeneration. These data suggest that such viscoelastic hydrogel provided a suitable 3D microenvironment for enhancing 3D myogenic differentiation, and the 3D bioprinted anisotropic structure provided a 3D macroenvironment for myotube organization, which indicated the potential in skeletal muscle engineering and VML regeneration. STATEMENT OF SIGNIFICANCE: The development of a viscoelastic 3D aligned biomimetic skeletal muscle scaffold has been focused on skeletal muscle regeneration. However, a credible technique combining viscoelastic hydrogel and printing gel-in-gel strategy for fabricating skeletal muscle tissue was rarely reported. Therefore, in this study, we present an interpenetrating network (IPN) hydrogel with fast stress relaxation for 3D bioprinting engineered skeletal muscle via a printing gel-in-gel strategy. Such IPN hydrogels with tunable fast stress relaxation resulted in high 3D cellular proliferation and adequate differentiation in vitro. Besides, the 3D hydrogel-based scaffolds also enhance functional skeletal muscle regeneration in situ. We believe that this study provides several notable advances in tissue engineering that can be potentially used for skeletal muscle injury treatment in clinical.


Subject(s)
Bioprinting , Tissue Engineering , Rats , Animals , Tissue Engineering/methods , Hydrogels/pharmacology , Hydrogels/chemistry , Tissue Scaffolds/chemistry , Muscle, Skeletal , Muscle Fibers, Skeletal , Bioprinting/methods , Gelatin/pharmacology , Printing, Three-Dimensional
2.
Nanoscale ; 15(1): 294-303, 2022 Dec 22.
Article in English | MEDLINE | ID: mdl-36484267

ABSTRACT

Metal-organic frameworks (MOFs) have drawn a lot of interest as prospective starting points for highly effective electromagnetic wave (EMW) absorbers. However, the inevitable shrinkage and probable densification that occur during pyrolysis significantly reduce the microwave-loss capacity. A dual-layer MOF, ZIF-8@ZIF-67, is created and effectively decorated on graphene sheets as a solution to this problem. The shrinkage and densification were then suppressed by the subsequent pulverization effect between the two MOFs. Due to suitable compositions and specialized microstructures, G/Co@C exhibits excellent impedance matching and dissipates EMW by combining magnetic and dielectric loss. The maximum reflection loss of G/Co@C-7/paraffin is -55.0 dB at 5.8 GHz with just 7% filler. Therefore, the preparation of high-efficiency MOF-derived microwave absorbers by the pulverization effect is demonstrated to be an efficient strategy.

3.
Soft Matter ; 16(14): 3548-3554, 2020 Apr 08.
Article in English | MEDLINE | ID: mdl-32219248

ABSTRACT

Due to the poor heat-resistance and intrinsic weakness of the bridging moieties in aerogel matrixes, it remains greatly challenging to fabricate highly thermostable and toughened silsesquioxane aerogels. By utilizing bismaleimide as the bridging part and optimizing the solvent polarity, lightweight (ρ < 0.09 g cm-3), compressible (80% strain) and superhydrophobic (CA ≈ 150°) bismaleimide bridged silsesquioxane aerogels (BMIT-BSAs) are constructed. The microstructure and compressive modulus of BMIT-BSAs can be tuned by the sol-gel solvents with different polarities. Moreover, stable low-temperature wettability at -196 °C and a significantly increased initial deposition temperature of 336 °C for both N2 and O2 atmospheres were measured, demonstrating the wide temperature tolerance of BMIT-BSAs.

4.
Soft Matter ; 13(20): 3802-3811, 2017 May 24.
Article in English | MEDLINE | ID: mdl-28485752

ABSTRACT

A thiophene-based hybrid organogel system consisting of complex iridium (Ir) and EuCl3·6H2O was designed and synthesized to realize dual responses to volatile acids and organic amine vapors. The photophysical properties and self-assembly of compound 1 and the hybrid organogel were also studied. Compound 1 could gelate some organic solvents and self-assemble into 3D nanofibers in the gels. The stable hybrid organogel 1-Ir-Eu could be obtained after addition of complex Ir and EuCl3·6H2O. FTIR spectral results showed that the hydrogen bond still remained even upon addition of complex Ir, EuCl3·6H2O, NaOH and CF3COOH to organogel 1. Interestingly, the emission properties of the hybrid organogel 1-Ir-Eu could undergo interconversion between cyan light and red light via addition of NaOH and CF3COOH. The emission properties of xerogel film 1-Ir-Eu obtained in the presence of NaOH could also undergo fast and reversible transition in response to volatile acids such as CF3COOH, formic acid, acetic acid, propionic acid and organic amine vapors such as ammonium hydroxide, Et3N, tripropylamine, and ethylenediamine. The emission spectral change of Ir-Eu in the organogel or xerogel in the presence of base and acid demonstrated the formation of a new complex between complex Ir and EuCl3·6H2O. This dual-response process could be repeated many times. Contact angle experiment results further showed the morphology and internal components of the xerogel film surface in the process of response to gaseous CF3COOH and Et3N. This work provides a method for producing multifunctional supramolecular materials for sensing volatile acids and organic amine vapors.

6.
J Mater Chem B ; 5(25): 4973-4980, 2017 Jul 07.
Article in English | MEDLINE | ID: mdl-32264013

ABSTRACT

Schistosomiasis, an infectious disease caused by the Schistosoma parasitic worm, presents a serious public health issue. To date, investigation of anti-Schistosomiasis drug mechanisms through fluorescence imaging remains challenging due to the lack of appropriate dyes as fluorescent probes. Phosphorescent Ir(iii) complexes have been attracting substantial attention among various classes of fluorophores given their excellent photophysical properties. Herein, four phosphorescent Ir(iii) complexes were synthesized, two of which contained a triethylene glycol (TEG) hydrophilic group. The phosphorescent emission range of the four complexes lay between 500 and 750 nm, and their quantum yields ranged from 0.031 to 0.146. Furthermore, under the experimental concentration conditions, the TEG-modified complexes had low cytotoxicity. Cell fluorescence labeling experiments indicated that the TEG-modified complexes had good membrane permeability. Finally, the TEG-modified complexes showed remarkable labeling effects in adult Schistosoma fluorescence imaging. Thus, TEG-modified Ir(iii) complexes could be used as a new class of bilharzial fluorescent probes.

SELECTION OF CITATIONS
SEARCH DETAIL
...