Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 142
Filter
1.
J Photochem Photobiol B ; 260: 113039, 2024 Sep 27.
Article in English | MEDLINE | ID: mdl-39362112

ABSTRACT

An integrated system for in vivo multi-spectral imaging (MSI) and Raman spectroscopy was developed to understand the external morphology and internal molecular information of biological tissues. The achieved MSI images were reconstructed by eighteen separated images from 400 nm to 760 nm, whose illumination bands were selected with six tri-channel band filters. Based on the spectral analysis algorithms, the spatial distribution patterns of blood volume, blood oxygen content and tissue scatterer volume fraction were visualized. In vivo Raman spectral measurements were executed by inserting specially designed optical probe into instrumental channel of endoscope. By this way, the molecular composition at selected sampling points could be identified with its fingerprint spectral information under the guidance of molecular imaging modality. Therefore, both structural and compositional features of intestinal membrane could be addressed without labeling and continuously. The achieved results testified that our presented methodology reveals insights not easily extracted from either MSI or Raman spectroscopy individually, which brings the enrichment of biological and chemical meanings for future in vivo studies.

2.
Talanta ; 279: 126672, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-39111219

ABSTRACT

Spinal cord injury (SCI) is a debilitating neurological and pathological condition that results in significant impairments in motor, sensory, and autonomic functions. By integrating multispectral imaging (MSI) with Raman spectroscopy, a label-free optical methodology was developed for achieving a non-invasive in vivo understanding on the pathological features of SCI evolution. Under the guidance of captured the spectral imaging data cube with a rigid endoscope based MSI system, a special designed fiber probe passed through the instrumental channel for acquiring the finger-print spectral information from compression rat SCI models. After identifying the main visual features of injured spinal cord tissue in all Sham, 0-, 3- and 7-days post injury (0 DPI, 3 DPI, and 7 DPI) groups, the blood volume and oxygen content were visualized to describe hemorrhage, hypoxia and inflammatory state after acute injury. The averaged reflectance spectra, which were deduced from MSI data cubes, were utilized for describing oxygen saturation and hemoglobin concentration in living tissue. The results of Raman spectroscopy addressed complex compositional and conformational phenomena during SCI progression, correlated with the well-known event like neuronal apoptosis, hemorrhage, demyelination, and even the upregulation of chondroitin sulfate proteoglycans (CSPGs). A principal component analysis and linear discriminate algorithm (PCA-LDA) based discriminate model was introduced for categorizing spectral features in different injury stages, which was applicable for intraoperative interpretations on the complex pathological courses of SCI and therapeutic outcomes.


Subject(s)
Disease Models, Animal , Spectrum Analysis, Raman , Spinal Cord Injuries , Spinal Cord Injuries/pathology , Animals , Spectrum Analysis, Raman/methods , Rats , Rats, Sprague-Dawley , Principal Component Analysis , Male
3.
Front Oncol ; 14: 1320220, 2024.
Article in English | MEDLINE | ID: mdl-38962264

ABSTRACT

Background: Our previous studies have demonstrated that Raman spectroscopy could be used for skin cancer detection with good sensitivity and specificity. The objective of this study is to determine if skin cancer detection can be further improved by combining deep neural networks and Raman spectroscopy. Patients and methods: Raman spectra of 731 skin lesions were included in this study, containing 340 cancerous and precancerous lesions (melanoma, basal cell carcinoma, squamous cell carcinoma and actinic keratosis) and 391 benign lesions (melanocytic nevus and seborrheic keratosis). One-dimensional convolutional neural networks (1D-CNN) were developed for Raman spectral classification. The stratified samples were divided randomly into training (70%), validation (10%) and test set (20%), and were repeated 56 times using parallel computing. Different data augmentation strategies were implemented for the training dataset, including added random noise, spectral shift, spectral combination and artificially synthesized Raman spectra using one-dimensional generative adversarial networks (1D-GAN). The area under the receiver operating characteristic curve (ROC AUC) was used as a measure of the diagnostic performance. Conventional machine learning approaches, including partial least squares for discriminant analysis (PLS-DA), principal component and linear discriminant analysis (PC-LDA), support vector machine (SVM), and logistic regression (LR) were evaluated for comparison with the same data splitting scheme as the 1D-CNN. Results: The ROC AUC of the test dataset based on the original training spectra were 0.886±0.022 (1D-CNN), 0.870±0.028 (PLS-DA), 0.875±0.033 (PC-LDA), 0.864±0.027 (SVM), and 0.525±0.045 (LR), which were improved to 0.909±0.021 (1D-CNN), 0.899±0.022 (PLS-DA), 0.895±0.022 (PC-LDA), 0.901±0.020 (SVM), and 0.897±0.021 (LR) respectively after augmentation of the training dataset (p<0.0001, Wilcoxon test). Paired analyses of 1D-CNN with conventional machine learning approaches showed that 1D-CNN had a 1-3% improvement (p<0.001, Wilcoxon test). Conclusions: Data augmentation not only improved the performance of both deep neural networks and conventional machine learning techniques by 2-4%, but also improved the performance of the models on spectra with higher noise or spectral shifting. Convolutional neural networks slightly outperformed conventional machine learning approaches for skin cancer detection by Raman spectroscopy.

4.
Cells ; 13(13)2024 Jul 07.
Article in English | MEDLINE | ID: mdl-38995009

ABSTRACT

We developed an automated microregistration method that enables repeated in vivo skin microscopy imaging of the same tissue microlocation and specific cells over a long period of days and weeks with unprecedented precision. Applying this method in conjunction with an in vivo multimodality multiphoton microscope, the behavior of human skin cells such as cell proliferation, melanin upward migration, blood flow dynamics, and epidermal thickness adaptation can be recorded over time, facilitating quantitative cellular dynamics analysis. We demonstrated the usefulness of this method in a skin biology study by successfully monitoring skin cellular responses for a period of two weeks following an acute exposure to ultraviolet light.


Subject(s)
Skin , Humans , Skin/cytology , Skin/diagnostic imaging , Ultraviolet Rays , Cell Tracking/methods , Cell Proliferation , Cell Movement , Microscopy, Fluorescence, Multiphoton/methods , Microscopy/methods
5.
Biomed Opt Express ; 15(1): 131-141, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38223172

ABSTRACT

A coherent anti-Stokes Raman scattering (CARS)-based multimodality microscopy system was developed using a single Ti:sapphire femtosecond laser source for biological imaging. It provides three complementary and co-registered imaging modalities: CARS, MPM (multiphoton microscopy), and RCM (reflectance confocal microscopy). The imaging speed is about 1 frame-per-second (fps) with a digital resolution of 1024 × 1024 pixels. This microscopy system can provide clear 2-dimensional and 3-dimensional images of ex-vivo biological tissue samples. Its spectral selection initiates vibrational excitation in lipid cells (approximately 2850 cm-1) using two filters on the pump and Stokes beam paths. The excitation can be tuned over a wide spectral range with adjustable spectral filters. The imaging capability of this CARS-based multimodal microscopy system was demonstrated using porcine fat, murine skin, and murine liver tissue samples.

6.
Biosensors (Basel) ; 13(11)2023 Nov 09.
Article in English | MEDLINE | ID: mdl-37998154

ABSTRACT

Raman enhancement techniques are essential for gas analysis to increase the detection sensitivity of a Raman spectroscopy system. We have developed an efficient Raman enhancement technique called the collision-enhanced Raman scattering (CERS), where the active Raman gas as the analyte is mixed with a buffer gas inside the hollow-core photonic-crystal fiber (HCPCF) of a fiber-enhanced Raman spectroscopy (FERS) system. This results in an enhanced Raman signal from the analyte gas. In this study, we first showed that the intensity of the 587 cm-1 stimulated Raman scattering (SRS) peak of H2 confined in an HCPCF is enhanced by as much as five orders of magnitude by mixing with a buffer gas such as helium or N2. Secondly, we showed that the magnitudes of Raman enhancement depend on the type of buffer gas, with helium being more efficient compared to N2. This makes helium a favorable buffer gas for CERS. Thirdly, we applied CERS for Raman measurements of propene, a metabolically interesting volatile organic compound (VOC) with an association to lung cancer. CERS resulted in a substantial enhancement of propene Raman peaks. In conclusion, the CERS we developed is a simple and efficient Raman-enhancing mechanism for improving gas analysis. It has great potential for application in breath analysis for lung cancer detection.


Subject(s)
Lung Neoplasms , Spectrum Analysis, Raman , Humans , Spectrum Analysis, Raman/methods , Helium , Optics and Photonics
7.
Bioengineering (Basel) ; 10(10)2023 Oct 03.
Article in English | MEDLINE | ID: mdl-37892891

ABSTRACT

We previously developed a hollow-core photonic crystal fiber (HCPCF) based Raman scattering enhancement technique for gas/human breath analysis. It enhances photon-gas molecule interactions significantly but is still based on CW laser excitation spontaneous Raman scattering, which is a low-probability phenomenon. In this work, we explored nanosecond/sub-nanosecond pulsed laser excitation in HCPCF based fiber enhanced Raman spectroscopy (FERS) and successfully induced stimulated Raman scattering (SRS) enhancement. Raman measurements of simple and complex gases were performed using the new system to assess its feasibility for gas analysis. We studied the gas Raman scattering characteristics, the relationship between Raman intensities and pump energies, and the energy threshold for the transition from spontaneous Raman scattering to SRS. H2, CO2, and propene (C3H6) were used as test gases. Our results demonstrated that a single-beam pulsed pump combined with FERS provides an effective Raman enhancement technique for gas analysis. Furthermore, an energy threshold for SRS initiation was experimentally observed. The SRS-capable FERS system, utilizing a single-beam pulsed pump, shows great potential for analyzing complex gases such as propene, which is a volatile organic compound (VOC) gas, serving as a biomarker in human breath for lung cancer and other human diseases. This work contributes to the advancement of gas analysis and opens alternative avenues for exploring novel Raman enhancement techniques.

8.
Photodermatol Photoimmunol Photomed ; 39(5): 449-456, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37138413

ABSTRACT

BACKGROUND/PURPOSE: A recent direction in skin disease classification is to develop quantitative diagnostic techniques. Skin relief, colloquially known as roughness, is an important clinical feature. The aim of this study is to demonstrate a novel polarization speckle technique to quantitatively measure roughness on skin lesions in vivo. We then calculate the average roughness of different types of skin lesions to determine the extent to which polarization speckle roughness measurements can be used to identify skin cancer. METHODS: The experimental conditions were set to target the fine relief structure on the order of ten microns within a small field of view of 3 mm. The device was tested in a clinical study on patients with malignant and benign skin lesions that resemble cancer. The cancer group includes 37 malignant melanomas (MM), 43 basal cell carcinomas (BCC), and 26 squamous cell carcinomas (SCC), all categories confirmed by gold standard biopsy. The benign group includes 109 seborrheic keratoses (SK), 79 nevi, and 11 actinic keratoses (AK). Normal skin roughness was obtained for the same patients (301 different body sites proximal to the lesion). RESULTS: The average root mean squared (rms) roughness ± standard error of the mean for MM and nevus was equal to 19 ± 5 µm and 21 ± 3 µm, respectively. Normal skin has rms roughness of 31 ± 3 µm, other lesions have roughness of 35 ± 10 µm (AK), 35 ± 7 µm (SCC), 31 ± 4 µm (SK), and 30 ± 5 µm (BCC). CONCLUSION: An independent-samples Kruskal-Wallis test indicates that MM and nevus can be separated from each of the tested types of lesions, except each other. These results quantify clinical knowledge of lesion roughness and could be useful for optical cancer detection.


Subject(s)
Carcinoma, Basal Cell , Carcinoma, Squamous Cell , Keratosis, Actinic , Melanoma , Nevus , Skin Diseases , Skin Neoplasms , Humans , Skin Neoplasms/pathology , Carcinoma, Basal Cell/diagnostic imaging , Carcinoma, Basal Cell/pathology , Melanoma/diagnostic imaging , Melanoma/pathology , Carcinoma, Squamous Cell/diagnostic imaging
9.
Clin. transl. oncol. (Print) ; 25(3): 662-672, mar. 2023.
Article in English | IBECS | ID: ibc-216425

ABSTRACT

Aberrant activation of STAT3 signal pathway promotes tumor progression in many solid tumor types, including cervical cancer and endometrial cancer. BBI608, the STAT3 inhibitor had been reported in previous studies for restraining cancer stem cells. However, whether BBI608 is available for inhibiting the proliferation of cervical cancer or endometrial cancer remains poorly understood. This study investigated the anti-tumor effect and molecular mechanism of BBI608 on the patient-specific primary cells (PSPC) generated from cervical and endometrial cancer in vitro. Methods PSPCs were obtained from four patients via biopsy. The cell viability was analyzed by the CCK8 assay. The PSPCs were treated with various concentrations of BBI608 or/and paclitaxel; and then, western blot was applied to investigate the expression of phosphorylated STAT3 (pSTAT3). Results The PSPCs cell viability was reduced after treated with BBI608 at a lower concentration. Western blot results showed a reduction trend of pSTAT3 after PSPCs treated with BBI608. Our results demonstrated that BBI608 at the certain concentrations worked well in reducing the cell viability of PSPC from the patients who suffered from cervical cancer and endometrial cancer. Conclusions In this study, the patient-specific primary cell (PSPC) was used as the pre-clinical model for investigating the efficiency of BBI608 in reducing cancer cells viability. BBI608, at a clinical-relevant concentration, had valid efficiency in PSPCs from the patients. The dose of drugs treatment and the measured results were more valuable for further guiding clinical trials (AU)


Subject(s)
Humans , Endometrial Neoplasms/drug therapy , Paclitaxel/therapeutic use , STAT3 Transcription Factor/metabolism , Uterine Cervical Neoplasms/drug therapy , Cell Line, Tumor , Cell Proliferation , Cell Survival
10.
Spectrochim Acta A Mol Biomol Spectrosc ; 285: 121937, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36201869

ABSTRACT

The tumor-node-metastasis (TNM) system is the most common way that doctors determine the anatomical extent of cancer on the basis of clinical and pathological criteria. In this study, a spectral histopathological study has been carried out to bridge Raman micro spectroscopy with the breast cancer TNM system. A total of seventy breast tissue samples, including healthy tissue, early, middle, and advanced cancer, were investigated to provide detailed insights into compositional and structural variations that accompany breast malignant evolution. After evaluating the main spectral variations in all tissue types, the generalized discriminant analysis (GDA) pathological diagnostic model was established to discriminate the TNM staging and grading information. Moreover, micro-Raman images were reconstructed by K-means clustering analysis (KCA) for visualizing the lobular acinar in healthy tissue and ductal structures in all early, middle and advanced breast cancer tissue groups. While, univariate imaging techniques were adapted to describe the distribution differences of biochemical components such as tryptophan, ß-carotene, proteins, and lipids in the scanned regions. The achieved spectral histopathological results not only established a spectra-structure correlations via tissue biochemical profiles but also provided important data and discriminative model references for in vivo Raman-based breast cancer diagnosis.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/diagnosis , Breast Neoplasms/pathology , Neoplasm Staging , Breast/pathology , Spectrum Analysis, Raman/methods , Discriminant Analysis
11.
Clin Transl Oncol ; 25(3): 662-672, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36422798

ABSTRACT

PURPOSE: Aberrant activation of STAT3 signal pathway promotes tumor progression in many solid tumor types, including cervical cancer and endometrial cancer. BBI608, the STAT3 inhibitor had been reported in previous studies for restraining cancer stem cells. However, whether BBI608 is available for inhibiting the proliferation of cervical cancer or endometrial cancer remains poorly understood. This study investigated the anti-tumor effect and molecular mechanism of BBI608 on the patient-specific primary cells (PSPC) generated from cervical and endometrial cancer in vitro. METHODS: PSPCs were obtained from four patients via biopsy. The cell viability was analyzed by the CCK8 assay. The PSPCs were treated with various concentrations of BBI608 or/and paclitaxel; and then, western blot was applied to investigate the expression of phosphorylated STAT3 (pSTAT3). RESULTS: The PSPCs cell viability was reduced after treated with BBI608 at a lower concentration. Western blot results showed a reduction trend of pSTAT3 after PSPCs treated with BBI608. Our results demonstrated that BBI608 at the certain concentrations worked well in reducing the cell viability of PSPC from the patients who suffered from cervical cancer and endometrial cancer. CONCLUSIONS: In this study, the patient-specific primary cell (PSPC) was used as the pre-clinical model for investigating the efficiency of BBI608 in reducing cancer cells viability. BBI608, at a clinical-relevant concentration, had valid efficiency in PSPCs from the patients. The dose of drugs treatment and the measured results were more valuable for further guiding clinical trials.


Subject(s)
Endometrial Neoplasms , Uterine Cervical Neoplasms , Female , Humans , Uterine Cervical Neoplasms/drug therapy , Cell Survival , Endometrial Neoplasms/pathology , Paclitaxel/pharmacology , STAT3 Transcription Factor/metabolism , Cell Line, Tumor , Cell Proliferation
12.
Food Chem ; 408: 135210, 2023 May 15.
Article in English | MEDLINE | ID: mdl-36527916

ABSTRACT

Pericarpium Citri Reticulatae (PCR) is used in food and medical herbal formula, and its quality is determined by its age. Raman spectroscopy is a laser technology for molecular fingerprinting. The feasibility of using surface-enhanced Raman spectroscopy (SERS) to determine the PCR age was investigated. The Raman peaks were acquired using a Raman spectrometer with a 785 nm diode laser and were analyzed using principal component analysis (PCA) followed by linear discriminant analysis (PCA-LDA). There were six major peaks at 600, 730, 990, 1370, 1607, and 1742 cm-1 in the SERS spectra, and their intensity, especially the peak at 1607 cm-1, was inversely correlated with the PCR age. The different ages of PCR could be correctly classified with over 90 % accuracy by using PCA-LDA based on the SERS spectra. In conclusion, a Raman spectrometer may be used as a novel method to identify the age of PCR products.


Subject(s)
Citrus , Drugs, Chinese Herbal , Spectrum Analysis, Raman , Drugs, Chinese Herbal/analysis , Discriminant Analysis , Citrus/chemistry
13.
Biomed Opt Express ; 13(10): 5231-5245, 2022 Oct 01.
Article in English | MEDLINE | ID: mdl-36425639

ABSTRACT

During liver procurement, surgeons mostly rely on their subjective visual inspection of the liver to assess the degree of fatty infiltration, for which misclassification is common. We developed a Raman system, which consists of a 1064 nm laser, a handheld probe, optical filters, photodiodes, and a lock-in amplifier for real-time assessment of liver fat contents. The system performs consistently in normal and strong ambient light, and the excitation incident light penetrates at least 1 mm into duck fat phantoms and duck liver samples. The signal intensity is linearly correlated with MRI-calibrated fat contents of the phantoms and the liver samples.

14.
J Biophotonics ; 15(12): e202200189, 2022 12.
Article in English | MEDLINE | ID: mdl-36057844

ABSTRACT

By using Raman microspectroscopy, it aims to elucidate the cellular variations caused by the combination drug of γ-secretase inhibitor (DAPT) and cisplatin in osteosarcoma (OS) cells. Illustrated by the obtained results of spectral analysis, the intracellular composition significantly changed after combined drug actions compared to the solo DAPT treatment, indicating the synergistic effect of DAPT combined with cisplatin on OS cells. Meanwhile, multivariate curve resolution-alternating least squares (MCR-ALS) algorithm was utilized to address the biochemical constitution changes in all investigated groups including the untreated (UT), DAPT (40D) and combined drug (40D + 20C) treated cells. K-means cluster and univariate imaging were both utilized to visualize the changes in subcellular morphology and biochemical distribution. The presented study provides a unique understanding on the cellular responses to DAPT combined with cisplatin from the natural biochemical perspectives, and laids an experimental foundation for exploring the therapeutic strategies of other combined anticancer drugs in cancer cell model.


Subject(s)
Bone Neoplasms , Osteosarcoma , Humans , Amyloid Precursor Protein Secretases , Bone Neoplasms/drug therapy , Bone Neoplasms/pathology , Cisplatin/pharmacology , Cisplatin/therapeutic use , Osteosarcoma/drug therapy , Osteosarcoma/pathology , Platelet Aggregation Inhibitors/therapeutic use , Antinematodal Agents/therapeutic use
15.
J Photochem Photobiol B ; 226: 112366, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34826719

ABSTRACT

Confocal Raman Microspectroscopy (CRM) was employed to clarify the cellular response of cisplatin in osteosarcoma (OS) cells with different dosages and incubation times. The K7M2 mouse osteosarcoma cells were treated by cisplatin in 0 µM (UT group), 20 µM (20 T group), and 40 µM (40 T group) doses for 24-h (24H group) and 48-h (48H group), respectively. Raman spectroscopy was utilized to analyze the drug induced variations of intracellular biochemical components in osteosarcoma cells. The spectral results shows that the main changes in its biochemical composition come from nucleic acids. By adopting three different kernel functions (linear, polynomial, and Gaussian radial basis function (RBF)), principal component analysis combined with support vector machine models (PCA-SVM) was built to address the spectral variations among all investigated groups. Meanwhile, multivariate curve resolution alternating least squares (MCR-ALS) was further utilized to discuss on the chemical interpretation on the acquired spectral results. Moreover, Raman spectral images, which is reconstructed by K-means cluster analysis (KCA) with point-scanned hyperspectral dataset, was applied to illustrate the drug induced compositional and morphological variations in each subcellular region. The achieved results not only prove the application potential of Raman based analytical technique in non-labeled intracellular studies, but also illustrate the detailed compositional and structural information of cisplatin induced OS cell responses from the perspective of multivariate analysis and imaging of Raman spectroscopy.


Subject(s)
Cisplatin
16.
Biomed Opt Express ; 12(9): 5514-5528, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34692198

ABSTRACT

The aim of this study was to clarify the dose- and time-dependent effect of the γ-secretase inhibitor (DAPT) combined with cisplatin on osteosarcoma (OS) cells, evaluated by confocal Raman microspectral imaging (CRMI) technology. The intracellular composition significantly changed after combined drug action compared with the sole cisplatin treatment, proving the synergistic effect of DAPT combined with cisplatin on OS cells. The principal component analysis-linear discriminant analysis revealed the main compositional variations by distinguishing spectral characteristics. K-means cluster and univariate imaging were used to visualize the changes in subcellular morphology and biochemical distribution. The results showed that the increase of the DAPT dose and cisplatin treatment time in the combination treatment induced the division of the nucleus in OS cells, and other organelles also showed significant physiological changes compared with the effect of sole cisplatin treatment. After understanding the cellular response to the combined drug treatment at a molecular level, the achieved results provide an experimental fact for developing suitable individualized tumor treatment protocols.

17.
J Photochem Photobiol B ; 222: 112280, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34375907

ABSTRACT

Confocal Raman microspectral imaging (CRMI) has been used to detect the spectra-pathological features of ductal carcinoma in situ (DCIS) and lobular hyperplasia (LH) compared with the heathy (H) breast tissue. A total of 15-20 spectra were measured from healthy tissue, LH tissue, and DCIS tissue. One-way ANOVA and Tukey's honest significant difference (HSD) post hoc multiple tests were used to evaluate the peak intensity variations in all three tissue types. Besides that, linear discrimination analysis (LDA) algorithm was adopted in combination with principal component analysis (PCA) to classify the spectral features from tissues at different stages along the continuum to breast cancer. Moreover, by using the point-by-point scanning methodology, spectral datasets were obtained and reconstructed for further pathologic visualization by multivariate imaging methods, including K-mean clustering analysis (KCA) and PCA. Univariate imaging of individual Raman bands was also used to describe the differences in the distribution of specific molecular components in the scanning area. After a detailed spectral feature analysis from 800 to 1800 cm-1 and 2800 to 3000 cm-1 for all the three tissue types, the histopathological features were visualized based on the content and structural variations of lipids, proteins, phenylalanine, carotenoids and collagen, as well as the calcification phenomena. The results obtained not only allowed a detailed Raman spectroscopy-based understanding of the malignant transformation process of breast cancer, but also provided a solid spectral data support for developing Raman based breast cancer clinical diagnostic techniques.


Subject(s)
Breast Neoplasms/pathology , Microscopy, Confocal/methods , Spectrum Analysis, Raman , Breast Neoplasms/chemistry , Breast Neoplasms/metabolism , Cluster Analysis , Discriminant Analysis , Disease Progression , Female , Humans , Principal Component Analysis
18.
J Biophotonics ; 14(9): e202100010, 2021 09.
Article in English | MEDLINE | ID: mdl-34092038

ABSTRACT

We herein report a novel, reliable and inexpensive method for detecting esophageal cancer using blood plasma resonance Raman spectroscopy combined with multivariate analysis methods. The blood plasma samples were divided into late stage cancer group (n = 164), early stage cancer group (n = 35) and normal group (n = 135) based on clinical pathological diagnosis. Using a specially designed quartz capillary tube as sample holder, we obtained higher quality resonance Raman spectra of blood plasma than existing method. The study demonstrated that the carotenoids levels in blood plasma were reduced in esophageal cancer patients. The area under the receiver operating characteristic curve (and 95% confidence interval) calculated by wavenumber selection and principal component analysis combined with linear discriminant analysis (PC-LDA) algorithm were 0.894 (0.858-0.929), 0.901 (0.841-0.960) and 0.871 (0.799-0.942) for differentiating late cancer from normal, late cancer from early cancer, and early cancer from normal respectively. The contribution from the two carotenoids wavenumber regions of 1155 and 1515 cm-1 were more than 84.2%. The results show that the plasma carotenoids could be a potential biomarker for screening esophageal cancer using resonance Raman spectroscopy combined with wavenumber selection and PC-LDA algorithms.


Subject(s)
Esophageal Neoplasms , Spectrum Analysis, Raman , Discriminant Analysis , Esophageal Neoplasms/diagnosis , Humans , Multivariate Analysis , Plasma , Principal Component Analysis
19.
Anal Methods ; 13(22): 2527-2536, 2021 06 10.
Article in English | MEDLINE | ID: mdl-34008598

ABSTRACT

Confocal Raman microspectral analysis and imaging were used to elucidate the drug response of osteosarcoma (OS) to cisplatin. Raman spectral data were obtained from OS cells that were untreated (UT group) and treated with 20 µM (20T group) and 40 µM (40T group) cisplatin for 24 hours. Statistical analysis of the changes in specific Raman signals was performed using a one-way ANOVA and multiple Tukey's honest significant difference (HSD) post hoc tests. Principal component analysis-linear discriminant analysis (PCA-LDA) was used to highlight the featured cellular drug responses based on the obtained spectral information. For spectral imaging analysis, k-means cluster analysis (KCA) was adopted to clarify the effect of cisplatin dose changes on the subcellular structure and its biochemical composition. The results suggest that the major biochemical changes induced by cisplatin in OS cells undergoing apoptosis are reduced protein and nucleic acid content. Through univariate analysis, the changes in the distribution of nucleic acids in OS cells induced by different doses of cisplatin were obtained. The combination of Raman spectroscopy and multivariate analysis shows that cisplatin mainly acts on the nucleus and causes changes in the secondary structure of proteins. These results indicate that Raman imaging technology has the potential to offer the basis of dose optimization for personalized cancer treatment by helping to understand in vitro cellular drug interactions.


Subject(s)
Bone Neoplasms , Osteosarcoma , Pharmaceutical Preparations , Bone Neoplasms/diagnostic imaging , Cisplatin/pharmacology , Humans , Osteosarcoma/diagnostic imaging , Principal Component Analysis
20.
Sci Rep ; 11(1): 2463, 2021 01 28.
Article in English | MEDLINE | ID: mdl-33510308

ABSTRACT

Routine monitoring of kidney transplant function is required for the standard care in post-transplantation management, including frequent measurements of serum creatinine with or without kidney biopsy. However, the invasiveness of these methods with potential for clinically significant complications makes them less than ideal. The objective of this study was to develop a non-invasive tool to monitor the kidney transplant function by using Surface-Enhanced Raman Spectroscopy (SERS). Urine and blood samples were collected from kidney transplant recipients after surgery. Silver nanoparticle-based SERS spectra of the urine were measured and evaluated using partial least squires (PLS) analysis. The SERS spectra were compared with conventional chemical markers of kidney transplant function to assess its predictive ability. A total of 110 kidney transplant recipients were included in this study. PLS results showed significant correlation with urine protein (R2 = 0.4660, p < 0.01), creatinine (R2 = 0.8106, p < 0.01), and urea (R2 = 0.7808, p < 0.01). Furthermore, the prediction of the blood markers of kidney transplant function using the urine SERS spectra was indicated by R2 = 0.7628 (p < 0.01) for serum creatinine and R2 = 0.6539 (p < 0.01) for blood urea nitrogen. This preliminary study suggested that the urine SERS spectral analysis could be used as a convenient method for rapid assessment of kidney transplant function.


Subject(s)
Kidney Transplantation , Kidney/physiopathology , Spectrum Analysis, Raman , Transplant Recipients , Urinalysis , Adult , Biomarkers/blood , Female , Humans , Kidney Function Tests , Least-Squares Analysis , Male , Vibration
SELECTION OF CITATIONS
SEARCH DETAIL