Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Biomater Res ; 27(1): 137, 2023 Dec 24.
Article in English | MEDLINE | ID: mdl-38142273

ABSTRACT

Hyaluronic acid (HA) is widely distributed in human connective tissue, and its unique biological and physicochemical properties and ability to facilitate biological structure repair make it a promising candidate for three-dimensional (3D) bioprinting in the field of tissue regeneration and biomedical engineering. Moreover, HA is an ideal raw material for bioinks in tissue engineering because of its histocompatibility, non-immunogenicity, biodegradability, anti-inflammatory properties, anti-angiogenic properties, and modifiability. Tissue engineering is a multidisciplinary field focusing on in vitro reconstructions of mammalian tissues, such as cartilage tissue engineering, neural tissue engineering, skin tissue engineering, and other areas that require further clinical applications. In this review, we first describe the modification methods, cross-linking methods, and bioprinting strategies for HA and its derivatives as bioinks and then critically discuss the strengths, shortcomings, and feasibility of each method. Subsequently, we reviewed the practical clinical applications and outcomes of HA bioink in 3D bioprinting. Finally, we describe the challenges and opportunities in the development of HA bioink to provide further research references and insights.

2.
BMJ Open ; 13(12): e075453, 2023 12 20.
Article in English | MEDLINE | ID: mdl-38128930

ABSTRACT

INTRODUCTION: Paediatric myocarditis, a rare inflammatory disease, often presents without clear early symptoms. Although cardiac troponin I levels can aid in diagnosing myocarditis, they are not definitive indicators. Troponin I levels frequently fluctuate within and outside the reference range, potentially causing misinterpretations by clinicians. Although a negative troponin I result is valuable for excluding myocarditis, its specificity is low. Moreover, the clinical diagnosis of paediatric myocarditis is exceptionally challenging, and accurate early-stage diagnosis and treatment pose difficulties. Currently, the Dallas criteria, involving cardiac biopsy, serves as the gold standard for myocarditis diagnosis. However, this method has several drawbacks and is unsuitable for children, resulting in its limited use. METHODS AND ANALYSIS: In this study, we will employ multiple logistic regression analysis to develop a predictive model for early childhood myocarditis. This model will assess the patient's condition at onset and provide the probability of a myocarditis diagnosis. Model performance will be evaluated for accuracy and calibration, and the results will be presented through receiver operating characteristic (ROC) curves and calibration plots. Clinical decision curve analysis, in conjunction with ROC curve analysis, will be employed to determine the optimal cut-off value and calculate the net clinical benefit value for assessing clinical effectiveness. Finally, internal model validation will be conducted using bootstrapping. ETHICS AND DISSEMINATION: Approval from the Clinical Research Ethics Committee of The Third Affiliated Hospital of Wenzhou Medical University has been obtained. The research findings will be disseminated through presentations at scientific conferences and publication in peer-reviewed journals.


Subject(s)
Myocarditis , Humans , Child, Preschool , Child , Adolescent , Myocarditis/diagnosis , Troponin I , Retrospective Studies , ROC Curve , China
3.
Heliyon ; 9(9): e19933, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37809859

ABSTRACT

Spinal cord injury (SCI) is characterized by damage resulting in dysfunction of the spinal cord. Hydrogels are common biomaterials that play an important role in the treatment of SCI. Hydrogels are biocompatible, and some have electrical conductivity that are compatible with spinal cord tissues. Hydrogels have a high drug-carrying capacity, allowing them to be used for SCI treatment through the loading of various types of active substances, drugs, or cells. We first discuss the basic anatomy and physiology of the human spinal cord and briefly discuss SCI and its treatment. Then, we describe different treatment strategies for SCI. We further discuss the crosslinking methods and classification of hydrogels and detail hydrogel biomaterials prepared using different processing methods for the treatment of SCI. Finally, we analyze the future applications and limitations of hydrogels for SCI. The development of biomaterials opens up new possibilities and options for the treatment of SCI. Thus, our findings will inspire scholars in related fields and promote the development of hydrogel therapy for SCI.

4.
Mater Today Bio ; 22: 100739, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37521525

ABSTRACT

The development of new wound dressings has always been an issue of great clinical importance and research promise. In this study, we designed a novel double cross-linked polysaccharide hydrogel microspheres based on alginate (ALG) and hyaluronic acid methacrylate (HAMA) from gas-assisted microfluidics for wound healing. The microspheres from gas-assisted microfluidics showed an uniform size and good microsphere morphology. Moreover, this composite polysaccharide hydrogel microspheres were constructed by harnessing the fact that zinc ions (Zn2+) can cross-link with ALG as well as histidine-tagged vascular endothelial growth (His-VEGF) to achieve long-term His-VEGF release, thus promoting angiogenesis and wound healing. Meanwhile, Zn2+, as an important trace element, can exert antibacterial and anti-inflammatory effects, reshaping the trauma microenvironment. In addition, photo cross-linked HAMA was introduced into the microspheres to further improve its mechanical properties and drug release ability. In summary, this novel Zn2+ composite polysaccharide hydrogel microspheres loaded with His-VEGF based on a dual cross-linked strategy exhibited synergistic antimicrobial and angiogenic effects in promoting wound healing.

SELECTION OF CITATIONS
SEARCH DETAIL
...