Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Biosci Biotechnol Biochem ; 88(4): 437-444, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38171531

ABSTRACT

Pleurotus citrinopileatus is a low-cholesterol, protein-rich, and high-nutrient food. The molecular mechanisms of the compounds and coloration have not been reported. Metabolome and transcriptome were used to clarify the molecular mechanisms of key compounds biosynthesis. K-means analysis identified 19 compounds in P. citrinopileatus, mainly lipids and alkaloids in class 8. In addition, 84 lipids were higher and that the different compounds were mainly enriched in linoleic acid metabolism. A total of 14 compounds detected in the linoleic acid metabolism pathway were significantly up-regulated, while 3 sterol regulatory element binding protein (SREBP) transcription factors were screened. Tryptophan metabolism and riboflavin biosynthesis pathway analysis indicated that 3 Unigenes had tryptophan decarboxylase similar elements, which belonged to tyrosine decarboxylase 1. Moreover, CL15618.Contig5_All had high homology with MFS. In conclusion, the expression of 3 SREBP, the synthesis of isobavachalcone D, and the regulation of riboflavin transport by MCH5 were the reasons for fatty acid accumulation and yellow cap formation in the P. citrinopileatus.


Subject(s)
Agaricales , Pleurotus , Fatty Acids , Sterol Regulatory Element Binding Protein 1 , Linoleic Acid , Sterol Regulatory Element Binding Proteins , Riboflavin
2.
J Fungi (Basel) ; 9(11)2023 Oct 30.
Article in English | MEDLINE | ID: mdl-37998869

ABSTRACT

Flammulina velutipes is a renowned edible and medicinal fungus. Commercially cultivated F. velutipes occurs in two distinct phenotypes: white and yellow. However, the underlying mechanism contributing to the yellow phenotype and high nutritional value remain uncertain. We reconfirmed that the browning process in F. velutipes is attributable to melanin accumulation, although the initial yellow cap seemed unrelated to melanin. A transcriptomic and metabolomic joint analysis revealed that 477 chemical compounds categorized into 11 classes, among which 191 exhibited significantly different levels of accumulation between different phenotypes. Specifically, 12 compounds were unique to the yellow F. velutipes, including ferulic acid, and 3-Aminosalicylic acid. Free fatty acids and xanthine were identified as the primary compounds correlating with the yellow and oily cap. A total of 44,087 genes were identified, which were more homologous to Pleurotus ostreatus PC15. Structural genes such as PAL (phenylalanine ammonialyase), C4H (cinnamate 4-hydroxylase), C3H (Coumarin-3-hydroxylase), AoMT (caffeoyl coenzyme A-O-methyltransferase), and 4CL (4-coumarate: CoA ligase) were up-regulated, thereby activating the lignin biosynthesis and metabolism pathway. Additionally, FvbHLH1 can lead to the consumption of a huge amount of phenylalanine while generating flavonoids and organic acid compounds. Meanwhile, ferulic acid biosynthesis was activated. Therefore, this study clarifies the chemical and molecular bases for the yellow phenotype and nutritional value of F. velutipes.

3.
Cells ; 12(11)2023 05 29.
Article in English | MEDLINE | ID: mdl-37296622

ABSTRACT

Glycyrrhiza inflata Batalin is a medicinal licorice species that has been widely used by humans for centuries. Licochalcone A (LCA) is a characteristic flavonoid that accumulates in G. inflata roots with high economical value. However, the biosynthetic pathway and regulatory network of its accumulation remain largely unknown. Here we found that a histone deacetylase (HDAC) inhibitor nicotinamide (NIC) could enhance the accumulation of LCA and total flavonoids in G. inflata seedlings. GiSRT2, a NIC-targeted HDAC was functionally analyzed and its RNAi transgenic hairy roots accumulated much more LCA and total flavonoids than its OE lines and the controls, indicating a negative regulatory role of GiSRT2 in the accumulation of LCA and total flavonoids. Co-analysis of transcriptome and metabolome of RNAi-GiSRT2 lines revealed potential mechanisms in this process. An O-methyltransferase gene, GiLMT1 was up-regulated in RNAi-GiSRT2 lines and the encoded enzyme catalyzed an intermediate step in LCA biosynthesis pathway. Transgenic hairy roots of GiLMT1 proved that GiLMT1 is required for LCA accumulation. Together, this work highlights the critical role of GiSRT2 in the regulation of flavonoid biosynthesis and identifies GiLMT1 as a candidate gene for the biosynthesis of LCA with synthetic biology approaches.


Subject(s)
Chalcones , Glycyrrhiza , Humans , Flavonoids , Metabolome
4.
J Cell Biochem ; 123(11): 1780-1792, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35933705

ABSTRACT

Glycyrrhiza inflata Bat. is a type of abiotic-stress-resistant plant with extremely high medicinal value. Histone demethylases (HDMTs) have been known to play crucial roles in the regulation of abiotic stress response. However, the molecular functions of HDMTs has not been studied in G. inflata. Here we identified 34 GiHDMT genes in G. inflata, which could be divided into the 6 groups through phylogenetic analysis. We further found that the gene structure and conserved protein motifs exhibit high conservation in each group of GiHDMT genes. Various abiotic-stress-related elements are detected in GiHDMT promoters, especially for the light-responsive element and abscisic acid-responsive element. Collinearity analysis indicated that segmental duplication contributed to the expansion of the GiHDMT family in licorice. Subcellular localization analysis revealed that green fluorescent protein-tagged GiHDMT2 and GiHDMT18 were predominantly localized in the nucleus, whereas GiHDMT1 were found in both the cytoplasm and nucleus. Real-time quantitative polymerase chain reaction showed that GiHDMTs presented differential expression patterns across different tissues. Moreover, changes in transcription level of GiHDMTs under abiotic stress indicate the potential role of GiHDMTs in the stress response in licorice. Finally, we found the histone methylation levels probably mediated by GiHDMT genes are changed with the treatment of NaCl and Na2 CO3 . Our study will lay the foundation for future research on the regulatory roles of GiHDMT genes in the environmental stress.


Subject(s)
Glycyrrhiza , Glycyrrhiza/chemistry , Glycyrrhiza/metabolism , Gene Expression Regulation, Plant , Phylogeny , Plant Proteins/genetics , Histone Demethylases/genetics , Stress, Physiological/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...