Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Theor Appl Genet ; 136(5): 98, 2023 Apr 07.
Article in English | MEDLINE | ID: mdl-37027050

ABSTRACT

KEY MESSAGE: Yellow Petal locus GaYP is located on chromosome 11 and encodes a Sg6 R2R3-MYB transcription factor, which promotes flavonol biosynthesis and yellow coloration in Asiatic cotton petals. Petal color is pivotal to ornamental value and reproduction of plants. Yellow coloration in plant petals is mainly attributed to colorants including carotenoids, aurones and some flavonols. To date, the genetic regulatory mechanism of flavonol biosynthesis in petals is still to be elucidated. Here, we employed Asiatic cottons with or without deep yellow coloration in petals to address this question. Multi-omic and biochemical analysis revealed significantly up-regulated transcription of flavonol structural genes and increased levels of flavonols, especially gossypetin and 6-hydroxykaempferol, in yellow petals of Asiatic cotton. Furthermore, the Yellow Petal gene (GaYP) was mapped on chromosome 11 by using a recombinant inbred line population. It was found that GaYP encoded a transcriptional factor belonging to Sg6 R2R3-MYB proteins. GaYP could bind to the promoter of flavonol synthase gene (GaFLS) and activate the transcription of downstream genes. Knocking out of GaYP or GaFLS homologs in upland cotton largely eliminated flavonol accumulation and pale yellow coloration in petals. Our results indicated that flavonol synthesis, up-regulated by the R2R3-MYB transcription activator GaYP, was the causative factor for yellow coloration of Asiatic cotton petals. In addition, knocking out of GaYP homologs also led to decrease in anthocyanin accumulation and petal size in upland cotton, suggesting that GaYP and its homologs might modulate developmental or physiological processes beyond flavonol biosynthesis.


Subject(s)
Gossypium , Plant Proteins , Gossypium/genetics , Gossypium/metabolism , Plant Proteins/metabolism , Anthocyanins , Transcription Factors/genetics , Transcription Factors/metabolism , Flowers/genetics , Flowers/metabolism , Flavonols/metabolism , Gene Expression Regulation, Plant
2.
J Exp Bot ; 74(1): 265-282, 2023 01 01.
Article in English | MEDLINE | ID: mdl-36255218

ABSTRACT

PIN-FORMED- (PIN) mediated polar auxin transport plays a predominant role in most auxin-triggered organogenesis in plants. Global control of PIN polarity at the plasma membrane contributes to the essential establishment of auxin maxima in most multicellular tissues. However, establishment of auxin maxima in single cells is poorly understood. Cotton fibers, derived from ovule epidermal cells by auxin-triggered cell protrusion, provide an ideal model to explore the underlying mechanism. Here, we report that cell-specific degradation of GhPIN3a, which guides the establishment of the auxin gradient in cotton ovule epidermal cells, is associated with the preferential expression of GhROP6 GTPase in fiber cells. In turn, GhROP6 reduces GhPIN3a abundance at the plasma membrane and facilitates intracellular proteolysis of GhPIN3a. Overexpression and activation of GhROP6 promote cell elongation, resulting in a substantial improvement in cotton fiber length.


Subject(s)
Arabidopsis Proteins , Indoleacetic Acids , Indoleacetic Acids/metabolism , Cotton Fiber , GTP Phosphohydrolases/metabolism , Biological Transport , Arabidopsis Proteins/metabolism
3.
Front Plant Sci ; 13: 944364, 2022.
Article in English | MEDLINE | ID: mdl-36072318

ABSTRACT

Four P4-ATPase flippase genes, VdDrs2, VdNeo1, VdP4-4, and VdDnf1 were identified in Verticillium dahliae, one of the most devastating phytopathogenic fungi in the world. Knock out of VdDrs2, VdNeo1, and VdP4-4, or knock down of VdDnf1 significantly decreased the pathogenicity of the mutants in cotton. Among the mutants, the greatest decrease in pathogenicity was observed in ΔVdDrs2. VdDrs2 was localized to plasma membrane, vacuoles, and trans-Golgi network (TGN). In vivo observation showed that the infection of the cotton by ΔVdDrs2 was significantly delayed. The amount of two known Verticillium toxins, sulfacetamide, and fumonisin B1 in the fermentation broth produced by the ΔVdDrs2 strain was significantly reduced, and the toxicity of the crude Verticillium wilt toxins to cotton cells was attenuated. In addition, the defect of VdDrs2 impaired the synthesis of melanin and the formation of microsclerotia, and decreased the sporulation of V. dahliae. Our data indicate a key role of P4 ATPases-associated vesicle transport in toxin secretion of disease fungi and support the importance of mycotoxins in the pathogenicity of V. dahliae.

4.
Theor Appl Genet ; 135(10): 3497-3510, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35962210

ABSTRACT

KEY MESSAGE: A novel mutation in the BnaA03.IAA7 protein reduces plant height and enhances gibberellin signaling in Brassica napus L. Rapeseed (Brassica napus) is an excellent and important source for vegetable oil production, but its production is severely affected by lodging. Lodging hinders mechanization and decreases yield, and an ideal solution is semidwarf breeding. Limited by germplasm resources, semidwarf breeding developed slowly in rapeseed. In the current study, a mutant called sdA03 was isolated from EMS-mutagenized lines of Zhongshuang 11 (ZS11). The inheritance analysis showed that phenotypes of sdA03 were controlled by a single semidominant gene. Genetic mapping, RNA-seq and candidate gene analysis identified BnaA03.IAA7 as a candidate gene, and a function test confirmed that the mutated BnaA03.iaa7 regulates plant architecture in a dose-dependent manner. Yeast two-hybrid and transient expression experiments illustrated the P87L substitution in the GWPPV/I degron motif of BnaA03.iaa7 impaired the interaction between BnaA03.IAA7 and TIR1 proteins, and BnaA03.iaa7 prevented ARF from activating the auxin signaling pathway.The gibberellin (GA) content was higher in sdA03 hypocotyls than in those of ZS11. Further expression analysis showed more active gibberellin signaling in hypocotyl and richer expression of GA synthetic genes in root and cotyledon of sdA03 seedlings. Finally, a marker was developed based on the SNP found in BnaA03.iaa7 and used in molecular breeding. The study enriched our understanding of the architectural regulation of rapeseed and provided germplasm resources for breeding.


Subject(s)
Brassica napus , Brassica rapa , Brassica napus/genetics , Brassica napus/metabolism , Brassica rapa/genetics , Gene Expression Profiling , Gibberellins/metabolism , Indoleacetic Acids/metabolism , Plant Breeding , Plant Oils/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Signal Transduction/genetics
5.
J Exp Bot ; 73(19): 6758-6772, 2022 11 02.
Article in English | MEDLINE | ID: mdl-35792654

ABSTRACT

Cytokinin is considered to be an important driver of seed yield. To increase the yield of cotton while avoiding the negative consequences caused by constitutive overproduction of cytokinin, we down-regulated specifically the carpel genes for cytokinin oxidase/dehydrogenase (CKX), a key negative regulator of cytokinin levels, in transgenic cotton. The carpel-specific down-regulation of CKXs significantly enhanced cytokinin levels in the carpels. The elevated cytokinin promoted the expression of carpel- and ovule-development-associated genes, GhSTK2, GhAG1, and GhSHP, boosting ovule formation and thus producing more seeds in the ovary. Field experiments showed that the carpel-specific increase of cytokinin significantly increased both seed yield and fiber yield of cotton, without resulting in detrimental phenotypes. Our study details the regulatory mechanism of cytokinin signaling for seed development, and provides an effective and feasible strategy for yield improvement of seed crops.


Subject(s)
Cytokinins , Seeds , Down-Regulation , Cytokinins/metabolism , Ovule , Gene Expression Regulation, Plant , Cotton Fiber
6.
Plant Cell Rep ; 41(4): 1059-1073, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35217893

ABSTRACT

KEY MESSAGE: Dynamic organization of actin and microtubule cytoskeletons directs a distinct expansion behavior of cotton fiber initiation from cell elongation. Cotton fibers are highly elongated single cells derived from the ovule epidermis. Although actin and microtubule (MT) cytoskeletons have been implicated in cell elongation and secondary wall deposition, their roles in fiber initiation is poorly understood. Here, we used fluorescent probes and pharmacological approaches to study the roles of these cytoskeletal components during cotton fiber initiation. Both cytoskeletons align along the growth axis in initiating fibers. The dorsal view of ovules shows that unlike the fine actin filaments (AFs) in nonfiber cells, the AFs in fiber cells are dense and bundled. MTs are randomized in fiber cells and well-ordered in nonfiber cells. The pharmacological experiments revealed that the depolymerization of AFs and MTs assisted fiber initiation. Both AF stabilization and depolymerization inhibited fiber elongation. In contrast, the proper depolymerization of MTs promoted cell elongation, although the MT-stabilizing drug consistently resulted in a negative effect. Notably, we found that the organization of AFs was correlated with MT dynamics. Stabilizing the MTs by taxol treatment promoted the formation of AF bundles (in fiber initials) and transversely aligned AFs (in elongating fibers), whereas depolymerizing the MTs by oryzalin treatment promoted the fragmentation of AFs. Collectively, our data indicates that MTs plays a crucial role in regulating AF organization and early development of cotton fibers.


Subject(s)
Actins , Cotton Fiber , Actin Cytoskeleton , Cytoskeleton , Gossypium , Microtubules
7.
Mol Genet Genomics ; 297(1): 199-212, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35048185

ABSTRACT

Cotton is the most important fiber crop in the world. Asiatic cotton (Gossypium arboreum, genome A2) is a diploid cotton species producing spinnable fibers and important germplasm for cotton breeding and a significant model for fiber biology. However, the genetic map of Asiatic cotton has been lagging behind tetraploid cottons, as well as other stable crops. This study aimed to construct a high-density SNP genetic map and to map QTLs for important yield and fiber quality traits. Using a recombinant inbred line (RIL) population and genome resequencing technology, we constructed a high-density genetic map that covered 1980.17 cM with an average distance of 0.61 cM between adjacent markers. QTL analysis revealed a total of 297 QTLs for 13 yield and fiber quality traits in three environments, explaining 5.0-37.4% of the phenotypic variance, among which 75 were stably detected in two or three environments. Besides, 47 QTL clusters, comprising 131 QTLs for representative traits, were identified. Our works laid solid foundation for fine mapping and cloning of QTL for yield and fiber quality traits in Asiatic cotton.


Subject(s)
Cotton Fiber/classification , Gossypium , Quantitative Trait Loci , Chromosome Mapping , Cotton Fiber/standards , Diploidy , Genetic Linkage , Genome, Plant , Gossypium/classification , Gossypium/genetics , Gossypium/metabolism , Phenotype , Plant Breeding , Polymorphism, Single Nucleotide , Sequence Analysis, DNA/methods
8.
Nat Commun ; 12(1): 6426, 2021 11 05.
Article in English | MEDLINE | ID: mdl-34741039

ABSTRACT

Many toxic secondary metabolites produced by phytopathogens can subvert host immunity, and some of them are recognized as pathogenicity factors. Fusarium head blight and Verticillium wilt are destructive plant diseases worldwide. Using toxins produced by the causal fungi Fusarium graminearum and Verticillium dahliae as screening agents, here we show that the Arabidopsis P4 ATPases AtALA1 and AtALA7 are responsible for cellular detoxification of mycotoxins. Through AtALA1-/AtALA7-mediated vesicle transport, toxins are sequestered in vacuoles for degradation. Overexpression of AtALA1 and AtALA7 significantly increases the resistance of transgenic plants to F. graminearum and V. dahliae, respectively. Notably, the concentration of deoxynivalenol, a mycotoxin harmful to the health of humans and animals, was decreased in transgenic Arabidopsis siliques and maize seeds. This vesicle-mediated cell detoxification process provides a strategy to increase plant resistance against different toxin-associated diseases and to reduce the mycotoxin contamination in food and feed.


Subject(s)
Arabidopsis/enzymology , Arabidopsis/virology , Fusarium/pathogenicity , Arabidopsis/genetics , Ascomycota/pathogenicity , Plant Diseases/microbiology , Plants, Genetically Modified/microbiology , Verticillium/pathogenicity
9.
Int J Mol Sci ; 22(14)2021 Jul 08.
Article in English | MEDLINE | ID: mdl-34298948

ABSTRACT

Verticillium wilt, caused by Verticillium dahliae, is a devastating disease for many important crops, including cotton. Kiwellins (KWLs), a group of cysteine-rich proteins synthesized in many plants, have been shown to be involved in response to various phytopathogens. To evaluate genes for their function in resistance to Verticillium wilt, we investigated KWL homologs in cotton. Thirty-five KWL genes (GhKWLs) were identified from the genome of upland cotton (Gossypium hirsutum). Among them, GhKWL1 was shown to be localized in nucleus and cytosol, and its gene expression is induced by the infection of V. dahliae. We revealed that GhKWL1 was a positive regulator of GhERF105. Silencing of GhKWL1 resulted in a decrease, whereas overexpression led to an increase in resistance of transgenic plants to Verticillium wilt. Interestingly, through binding to GhKWL1, the pathogenic effector protein VdISC1 produced by V. dahliae could impair the defense response mediated by GhKWL1. Therefore, our study suggests there is a GhKWL1-mediated defense response in cotton, which can be hijacked by V. dahliae through the interaction of VdISC1 with GhKWL1.


Subject(s)
Ascomycota , Fungal Proteins , Gene Expression Regulation, Fungal , Gossypium , Plant Diseases , Transcription Factors , Up-Regulation , Virulence Factors , Ascomycota/genetics , Ascomycota/metabolism , Ascomycota/pathogenicity , Fungal Proteins/biosynthesis , Fungal Proteins/genetics , Gossypium/genetics , Gossypium/metabolism , Gossypium/microbiology , Plant Diseases/genetics , Plant Diseases/microbiology , Plant Proteins/genetics , Plant Proteins/metabolism , Transcription Factors/biosynthesis , Transcription Factors/genetics , Virulence Factors/biosynthesis , Virulence Factors/genetics
10.
Front Plant Sci ; 12: 655127, 2021.
Article in English | MEDLINE | ID: mdl-34305962

ABSTRACT

Gibberellins (GAs) promote secondary cell wall (SCW) development in plants, but the underlying molecular mechanism is still to be elucidated. Here, we employed a new system, the first internode of cotton, and the virus-induced gene silencing method to address this problem. We found that knocking down major DELLA genes via VIGS phenocopied GA treatment and significantly enhanced SCW formation in the xylem and phloem of cotton stems. Cotton DELLA proteins were found to interact with a wide range of SCW-related NAC proteins, and virus-induced gene silencing of these NAC genes inhibited SCW development with downregulated biosynthesis and deposition of lignin. The findings indicated a framework for the GA regulation of SCW formation; that is, the interactions between DELLA and NAC proteins mediated GA signaling to regulate SCW formation in cotton stems.

12.
Front Plant Sci ; 11: 581983, 2020.
Article in English | MEDLINE | ID: mdl-33224170

ABSTRACT

Cotton fibers are single cells that show a relatively independent developmental process of cell differentiation, elongation, and secondary wall deposition. Auxin promotes fiber cell protrusion from the surface of the ovule. However, the role of auxin at other stages of cotton fiber development remains largely unknown. To gain a deeper insight into this aspect, we measured indoleacetic acid (IAA) content in developing fibers. Results showed an increase in IAA content at the transition stage from elongation to secondary cell wall deposition. Subsequently, we investigated the differences between two transgenic cottons that show upregulated and downregulated fiber auxin levels, respectively. In planta analysis revealed that, in addition to promoting cell elongation, auxin regulated the time of initiation of reactive oxygen species (ROS) production and secondary wall deposition in cotton fibers. This was closely correlated with the upregulated expression of GhRAC13, which regulates ROS-triggered cellulose synthesis. We found multiple putative auxin-responsive elements existed within the promoter region of GhRAC13, and IAA could induce proGhRAC13 activity. The dual-luciferase reporter assay further proved the activation of proGhRAC13 by GhARF5, an auxin-signaling activator. Altogether, our results suggest a role of auxin in promoting the onset of secondary growth by directly upregulating GhRAC13 expression in cotton fibers.

13.
Plant Cell Rep ; 38(8): 991-1000, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31069498

ABSTRACT

KEY MESSAGE: Sink-specific expression of a sucrose transporter protein gene from the C4 plant maize can promote carbohydrate accumulation in target tissues and increase both fiber and seed yield of cotton. Sucrose is the principal form of photosynthetic products transported from source tissue to sink tissue in higher plants. Enhancing the partition of carbohydrate to the target organ is a promising way to improve crop productivity. The C4 plant Zea mays exhibits a substantially higher rate of export of photosynthates than many C3 plants, and its sucrose transporter protein ZmSut1 displays important role in sucrose allocation. To investigate how use of ZmSUT1 gene to increase the fiber and seed yield of cotton, in this study, we expressed the gene in cotton under a senescence-inducible promoter PSAG12 and a seed coat-specific promoter BAN, respectively. We show that senescence-induced expression of ZmSUT1 results in an increase of sugar accumulation in leaves. Although the leaf senescence was postponed in PSAG12::ZmSUT1 cotton, the photosynthetic rate of the leaves was decreased. In contrast, seed coat-specific expression of the gene leads to an increase of sugar accumulation in fibers and bolls, and the leaf of transgenic BAN::ZmSUT1 cotton displayed higher photosynthetic capacity than the wild type. Importantly, both fiber and seed yield of transgenic BAN::ZmSUT1 cotton are significantly enhanced. Our data indicate the potential of enhancing yield of carbohydrate crops by the regulation of sugar partitioning.


Subject(s)
Seeds/metabolism , Sucrose/metabolism , Zea mays/metabolism , Aging/physiology , Gene Expression Regulation, Plant/genetics , Gene Expression Regulation, Plant/physiology , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism
14.
J Exp Bot ; 70(12): 3139-3151, 2019 06 28.
Article in English | MEDLINE | ID: mdl-30970146

ABSTRACT

Auxin-dependent cell expansion is crucial for initiation of fiber cells in cotton (Gossypium hirsutum), which ultimately determines fiber yield and quality. However, the regulation of this process is far from being well understood. In this study, we demonstrate an antagonistic effect between cytokinin (CK) and auxin on cotton fiber initiation. In vitro and in planta experiments indicate that enhanced CK levels can reduce auxin accumulation in the ovule integument, which may account for the defects in the fiberless mutant xu142fl. In turn, supplementation with auxin can recover fiber growth of CK-treated ovules and mutant ovules. We further found that GhPIN3a is a key auxin transporter for fiber-cell initiation and is polarly localized to the plasma membranes of non-fiber cells, but not to those of fiber cells. This polar localization allows auxin to be transported within the ovule integument while specifically accumulating in fiber cells. We show that CKs antagonize the promotive effect of auxin on fiber cell initiation by undermining asymmetric accumulation of auxin in the ovule epidermis through down-regulation of GhPIN3a and disturbance of the polar localization of the protein.


Subject(s)
Cytokinins/metabolism , Gossypium/growth & development , Indoleacetic Acids/metabolism , Ovule/metabolism , Plant Proteins/genetics , Cotton Fiber , Gossypium/genetics , Gossypium/metabolism , Plant Epidermis/metabolism , Plant Proteins/metabolism
15.
Methods Mol Biol ; 1902: 177-185, 2019.
Article in English | MEDLINE | ID: mdl-30543070

ABSTRACT

Calcium ion (Ca2+) is a core regulator of cell functions in response to many developmental and environmental stimuli. A hallmark for Ca2+ signaling is the change of this ion in cells. Fluorescent resonance energy transfer (FRET)-based Ca2+ sensors provide a powerful tool for qualitatively and quantitatively measuring cytosolic Ca2+ level. Using YC3.60, one of those sensors, we have imaged cytosolic changes of Ca2+ in cotton fibers during the initiation stage. In this chapter, the imaging method is described in detail. The description is not limited to fiber cells but also examples leaf trichomes and protoplasts of cotton.


Subject(s)
Calcium/metabolism , Gossypium/genetics , Gossypium/metabolism , Molecular Imaging , Plant Cells/metabolism , Calcium Signaling , Molecular Imaging/methods , Plant Leaves , Protoplasts , Transformation, Genetic
16.
BMC Plant Biol ; 18(1): 286, 2018 Nov 20.
Article in English | MEDLINE | ID: mdl-30458710

ABSTRACT

BACKGROUND: Plant architecture and the vegetative-reproductive transition have major impacts on the agronomic success of crop plants, but genetic mechanisms underlying these traits in cotton (Gossypium spp.) have not been identified. RESULTS: We identify four natural mutations in GoCEN-Dt associated with cluster fruiting (cl) and early maturity. The situ hybridization shows that GhCEN is preferentially expressed in cotton shoot apical meristems (SAM) of the main stem and axillary buds. Constitutive GhCEN-Dt overexpression suppresses the transition of the cotton vegetative apex to a reproductive shoot. Silencing GoCEN leads to early flowering and determinate growth, and in tetraploids causes the main stem to terminate in a floral bud, a novel phenotype that exemplifies co-adaptation of polyploid subgenomes and suggests new research and/or crop improvement approaches. Natural cl variations are enriched in cottons adapted to high latitudes with short frost-free periods, indicating that mutants of GoCEN have been strongly selected for early maturity. CONCLUSION: We show that the cotton gene GoCEN-Dt, a homolog of Antirrhinum CENTRORADIALIS, is responsible for determinate growth habit and cluster fruiting. Insight into the genetic control of branch and flower differentiation offers new approaches to develop early maturing cultivars of cotton and other crops with plant architecture appropriate for mechanical harvesting.


Subject(s)
Genes, Plant , Genetic Variation , Gossypium/genetics , Flowers/genetics , Fruit/growth & development , Gene Expression , Gossypium/growth & development , Mutation , Plant Breeding
17.
Plant Signal Behav ; 12(5): e1319031, 2017 05 04.
Article in English | MEDLINE | ID: mdl-28426370

ABSTRACT

Cotton fibers are differentiated ovule epidermal cells that provide an ideal model to study cell differentiation and elongation. Establishment of auxin maximum in fiber cells is crucial for cotton-fiber protrusion from ovule surface. However, it is unclear where the auxin originates from and how the auxin accumulates in fiber cells. Our recent results indicate that the auxin is mainly imported from the outside of ovules, and transported to fiber cells through GhPIN (homolog of PIN-formed proteins in cotton) -mediated polar auxin transport, rather than in situ synthesis. Based on our finding in GhPINs, we discuss here briefly how auxin flow to fiber cells and auxin gradient in ovule epidermis is established mainly by GhPIN3a protein.


Subject(s)
Gossypium/metabolism , Indoleacetic Acids/metabolism , Plant Proteins/metabolism , Cotton Fiber , Gene Expression Regulation, Plant , Gossypium/genetics , Ovule/genetics , Ovule/metabolism , Plant Proteins/genetics , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism
18.
Plant Cell Rep ; 36(6): 911-918, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28275854

ABSTRACT

KEY MESSAGE: Non-tip-focused Ca 2+ gradient indicated by genetically expressing a FRET-based calcium sensor YC3.60 was established in spherical expanding cotton fibers, which is vital for cotton fiber initiation. Cotton fiber is a single cell elongated from ovule epidermis. It is not only the most important natural fiber used in the textile industry but also an ideal model for studying cell differentiation and elongation. Before linear cell growth, cotton fibers undergo spherical expansion at the beginning of initiation. Ca2+, as an important secondary messenger, plays a central role in polarized cell growth including cotton fiber elongation. However, the role of Ca2+ in fiber initiation is far from well understood. In this paper, through ovule culture we demonstrate that Ca2+ is crucial for fiber initiation. Using transgenic cotton expressing the fluorescent Ca2+ indicator YC3.60, we show cellular and intracellular distribution of Ca2+ in cotton ovule epidermis and fiber cells. In the initiating fiber cell, Ca2+ accumulated mainly at the base of the cell, while in the fast elongating cell, the Ca2+ was enriched in the tip region. This cellular distribution of Ca2+ reported by YC3.60 was confirmed by the staining with a Ca2+-sensitive dye fluo-3/AM. Compared to the fluorescent dye staining, the YC3.60 system can reveal more detailed information on the intracellular distribution without photobleaching. Taken together, our data suggest that Ca2+ plays an important role in spherical expansion of cotton fiber initials.


Subject(s)
Calcium/metabolism , Gossypium/metabolism , Plant Proteins/metabolism , Cotton Fiber , Fluorescent Dyes , Gene Expression Regulation, Plant , Gossypium/genetics , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism
19.
Plant Cell Physiol ; 58(2): 385-397, 2017 02 01.
Article in English | MEDLINE | ID: mdl-28034911

ABSTRACT

Cotton fibers are seed trichomes that make cotton unique compared with other plants. At anthesis, IAA, a major auxin in plants, accumulates in the fiber cell to promote cell initiation. However, many important aspects of this process are not clear. Here, auxin distribution patterns indicated by auxin-dependent DR5::GUS (ß-glucuronidase) expression in cotton ovules were studied during fiber cell differentiation and cell initiation [-2 to 2 DPA (days post-anthesis)]. The nucellus and fiber cell were two major sites where auxin accumulates. The accumulation in the nucellus started from -1 DPA, and that in fiber cells from 0 DPA. Immunolocalization analysis further suggests that the IAA accumulation in fiber initials began before flower opening. Furthermore, we demonstrate that accumulated IAA in fiber initials was mainly from efflux transport and not from in situ synthesis. Eleven auxin efflux carrier (GhPIN) genes were identified, and their expression during ovule and fiber development was investigated. Ovule-specific suppression of multiple GhPIN genes in transgenic cotton inhibited both fiber initiation and elongation. In 0 DPA ovules, GhPIN3a, unlike other GhPIN genes, showed additional localization of the transcript in the outer integument. Collectively, these results demonstrate the important role of GhPIN-mediated auxin transport in fiber-specific auxin accumulation for fiber initiation.


Subject(s)
Cotton Fiber , Gossypium/metabolism , Indoleacetic Acids/metabolism , Plant Proteins/metabolism , Biological Transport/genetics , Biological Transport/physiology , Gene Expression Regulation, Plant/genetics , Gene Expression Regulation, Plant/physiology , Gossypium/genetics , Plant Proteins/genetics
20.
PLoS One ; 9(5): e96537, 2014.
Article in English | MEDLINE | ID: mdl-24816840

ABSTRACT

Bioactive gibberellins (GAs) comprise an important class of natural plant growth regulators and play essential roles in cotton fiber development. To date, the molecular base of GAs' functions in fiber development is largely unclear. To address this question, the endogenous bioactive GA levels in cotton developing fibers were elevated by specifically up-regulating GA 20-oxidase and suppressing GA 2-oxidase via transgenic methods. Higher GA levels in transgenic cotton fibers significantly increased micronaire values, 1000-fiber weight, cell wall thickness and cellulose contents of mature fibers. Quantitative RT-PCR and biochemical analysis revealed that the transcription of sucrose synthase gene GhSusA1 and sucrose synthase activities were significantly enhanced in GA overproducing transgenic fibers, compared to the wild-type cotton. In addition, exogenous application of bioactive GA could promote GhSusA1 expression in cultured fibers, as well as in cotton hypocotyls. Our results suggested that bioactive GAs promoted secondary cell wall deposition in cotton fibers by enhancing sucrose synthase expression.


Subject(s)
Cell Wall/enzymology , Cotton Fiber/standards , Gibberellins/metabolism , Glucosyltransferases/metabolism , Gossypium/enzymology , Plant Proteins/metabolism , Amino Acid Sequence , Cell Wall/genetics , Cellulose/biosynthesis , Gene Expression Regulation, Enzymologic/drug effects , Gene Expression Regulation, Plant/drug effects , Gibberellins/pharmacology , Glucosyltransferases/classification , Glucosyltransferases/genetics , Gossypium/genetics , Hypocotyl/enzymology , Hypocotyl/genetics , Mixed Function Oxygenases/genetics , Mixed Function Oxygenases/metabolism , Molecular Sequence Data , Phylogeny , Plant Growth Regulators/metabolism , Plant Growth Regulators/pharmacology , Plant Proteins/classification , Plant Proteins/genetics , Plants, Genetically Modified , RNA Interference , Sequence Homology, Amino Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...