Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Opt Express ; 31(22): 35471-35483, 2023 Oct 23.
Article in English | MEDLINE | ID: mdl-38017716

ABSTRACT

We demonstrate the existence of surface gap solitons, a special type of asymmetric solitons, in the one-dimensional nonlinear Schrödinger equation with quintic nonlinearity and a periodic linear potential. The nonlinearity is suddenly switched in a step-like fashion in the middle of the transverse spatial region, while the periodic linear potential is chosen in the form of a simple sin 2 lattice. The asymmetric nonlinearities in this work can be realized by the Feshbach resonance in Bose-Einstein condensates or by the photorefractive effect in optics. The major peaks in the gap soliton families are asymmetric and they are located at the position of the jump in nonlinearity (at x = 0). In addition, the major peaks of the two-peak and multi-peak solitons at the position x = 0 are higher than those after that position, at x > 0. And such phenomena are more obvious when the value of chemical potential is large, or when the difference of nonlinearity values across the jump is big. Along the way, linear stability analysis of the surface gap solitons is performed and the stability domains are identified. It is found that in this model, the solitons in the first band gap are mostly stable (excepting narrow domains of instability at the edges of the gap), while those in the second band gap are mostly unstable (excepting extremely narrow domains of stability for fundamental solitons). These findings are also corroborated by direct numerical simulations.

2.
Sci Rep ; 13(1): 13768, 2023 Aug 23.
Article in English | MEDLINE | ID: mdl-37612417

ABSTRACT

Analytically solvable models are benchmarks in studies of phase transitions and pattern-forming bifurcations. Such models are known for phase transitions of the second kind in uniform media, but not for localized states (solitons), as integrable equations which produce solitons do not admit intrinsic transitions in them. We introduce a solvable model for symmetry-breaking phase transitions of both the first and second kinds (alias sub- and supercritical bifurcations) for solitons pinned to a combined linear-nonlinear double-well potential, represented by a symmetric pair of delta-functions. Both self-focusing and defocusing signs of the nonlinearity are considered. In the former case, exact solutions are produced for symmetric and asymmetric solitons. The solutions explicitly demonstrate a switch between the symmetry-breaking transitions of the first and second kinds (i.e., sub- and supercritical bifurcations, respectively). In the self-defocusing model, the solution demonstrates the transition of the second kind which breaks antisymmetry of the first excited state.

3.
Opt Lett ; 48(16): 4233-4236, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37582000

ABSTRACT

Controllable trajectories of beams are one of the main themes in optical science. Here, we investigate the propagation dynamics of Laguerre-Gaussian (LG) solitons in parabolic potential wells and introduce off-axis and chirp parameters (which represent the displacement and the initial angle of beams) to make solitons sinusoidally oscillate in the x and y directions and undergo elliptically or circularly spiraling trajectories during propagation. Additionally, LG solitons with different orders and powers can be combined into soliton arrays of various shapes, depending on the off-axis parameter. Moreover, the soliton arrays can exhibit periodic converging, rotating, and other evolution behaviors, by the proper choice of the chirp parameter. A series of interesting examples demonstrate typical propagation scenarios. Our results may provide a new perspective on and stimulate further investigations of multisoliton interactions in potential wells and may find applications in optical communication and particle control.

4.
Opt Express ; 31(6): 9563-9578, 2023 Mar 13.
Article in English | MEDLINE | ID: mdl-37157524

ABSTRACT

We demonstrate what we believe to be novel triangular bright solitons that can be supported by the nonlinear Schrödinger equation with inhomogeneous Kerr-like nonlinearity and external harmonic potential, which can be realized in nonlinear optics and Bose-Einstein condensates. The profiles of these solitons are quite different from the common Gaussian or sech envelope beams, as their tops and bottoms are similar to the triangle and inverted triangle functions, respectively. The self-defocusing nonlinearity gives rise to the triangle-up solitons, while the self-focusing nonlinearity supports the triangle-down solitons. Here, we restrict our attention only to the lowest-order fundamental triangular solitons. All such solitons are stable, which is demonstrated by the linear stability analysis and also clarified by direct numerical simulations. In addition, the modulated propagation of both types of triangular solitons, with the modulated parameter being the strength of nonlinearity, is also presented. We find that such propagation is strongly affected by the form of the modulation of the nonlinearity. For example, the sudden change of the modulated parameter causes instabilities in the solitons, whereas the gradual variation generates stable solitons. Also, a periodic variation of the parameter causes the regular oscillation of solitons, with the same period. Interestingly, the triangle-up and triangle-down solitons can change into each other, when the parameter changes the sign.

5.
Opt Lett ; 48(3): 747-750, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36723579

ABSTRACT

This paper presents a novel, to the best of our knowledge, method for realizing soliton transformation between different potential wells by gradually manipulating their depths in the propagation direction. The only requirements for such a transformation are that the gradient of the manipulated depth is smooth enough and the solitons in different potential wells are both in the regions of stability. The comparison of transformed solitons with the iterative ones obtained by the accelerated imaginary-time evolution method proves that our method is efficient and reliable. An interesting consequence is that in some complex potential wells in which it is difficult to find solitons by iterative numerical methods, stable solitons can be obtained by the transformation method. The controllable soliton transformation provides an excellent opportunity for all-optical switching, optical information processing, and other applications.

6.
Phys Rev E ; 106(5-1): 054214, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36559458

ABSTRACT

This paper numerically investigates the propagation of Laguerre-Gaussian vortex beams launched in nonlocal nonlinear media, such as lead glass. Our results show that the propagation properties depend on the selection of beam parameters m and p, which represent the azimuthal and radial mode numbers. When p=0, these profiles can be stable solitons for m≤2, or break up and then form a set of single-hump profiles for m≥3, which are unbounded states with scattered remnants of the energy. However, for p≥1, the broken beams can evolve into vortex chaoticons, which exhibit both chaotic and solitonlike properties. The chaotic properties are determined by the positive Lyapunov exponents and spatial decoherence, while the solitonlike properties are demonstrated by the invariance of beam width and the interaction of beams in the form of quasielastic collisions. In addition, the power and orbital angular momentum of unbounded beam states both decay in propagation, while those of the chaoticons maintain their values well.

7.
Opt Express ; 30(23): 42504-42511, 2022 Nov 07.
Article in English | MEDLINE | ID: mdl-36366703

ABSTRACT

We prove that the dark solitons can be stable in the purely quintic nonlinear lattices, including the fundamental, tripole and five-pole solitons. These dark soliton families are generated on the periodic nonlinear backgrounds. The propagation constant affects the forms of these solitons, while the number of poles does not lead to the variation of the backgrounds. The dark solitons are stable only when the propagation constant is moderately large.

8.
Opt Express ; 30(15): 27429-27438, 2022 Jul 18.
Article in English | MEDLINE | ID: mdl-36236914

ABSTRACT

High spatial resolution on the image plane (intrinsic spatial resolution) has always been a problem for ultrafast imaging. Single-shot ultrafast imaging methods can achieve high spatial resolution on the object plane through amplification systems but with low intrinsic spatial resolutions. We present frequency domain integration sequential imaging (FISI), which encodes a transient dynamic by an inversed 4f (IFF) system and decodes it using optical spatial frequencies recognition (OFR), which overcomes the limitation of the spatial frequencies recognition algorithm. In an experiment on the process of an air plasma channel, FISI achieved shadow imaging of the channel with a framing rate of 1.26×1013 fps and an intrinsic spatial resolution of 108 lp/mm (the spatial resolution on the image plane). Owing to its excellent framing time and high intrinsic spatial resolution, FISI can probe both repeatable and unrepeatable ultrafast phenomena, such as laser-induced damage, plasma physics, and shockwave interactions in living cells with high quality.

9.
Opt Lett ; 47(5): 1041-1044, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-35230285

ABSTRACT

This paper numerically investigates the evolution of solitons in an optical lattice with gradual longitudinal manipulation. We find that the stationary solutions (with added noise to the amplitude) keep their width, profile, and intensity very well, although the propagation path is continuously changing during the modulated propagation. Discontinuities in the modulation functions cause the scattering of the beam that may end the stable propagation. Our results reveal a method to control the trajectory of solitons by designed variation of the optical lattice waveguides. Interesting examples presented include the snakelike and spiraling solitons that both can be adaptively induced in sinusoidally and helically shaped optical lattices. The controlled propagation paths provide an excellent opportunity for various applications, including optical switches and signal transmission, among others.

10.
Opt Express ; 29(17): 27298-27308, 2021 Aug 16.
Article in English | MEDLINE | ID: mdl-34615148

ABSTRACT

A novel single-shot ultrafast all-optical photography with raster principle (OPR) that can capture real-time imaging of ultrafast phenomena is proposed and demonstrated. It consists of a sequentially timed module (STM), spectral-shaping module (SSM), and raster framing camera (RFC). STM and SSM are used for linearly encoding frequency-time mapping and system calibration, respectively. The function of the RFC is sampling the target by microlens arrays and framing on the basis of frequency-time-spatial positions conversion. We demonstrated the recording of transient scenes with the spatial resolution of ∼90lp/mm, the frame number of 12 and the frame rate of 2 trillion frames per second (Tfps) in single-shot. Thanks to its high spatial-temporal resolution, high frame rate (maximum up to 10 Tfps or more) and sufficient frame number, our OPR can observe the dynamic processes with complex spatial structure at the atomic time scale (10 fs∼1ps), which is promising for application in plasma physics, shock waves in laser-induced damage, and dynamics of condensed matter materials.

11.
Opt Lett ; 46(9): 2216-2219, 2021 May 01.
Article in English | MEDLINE | ID: mdl-33929457

ABSTRACT

Dark solitons and localized defect modes against periodic backgrounds are considered in arrays of waveguides with defocusing Kerr nonlinearity, constituting a nonlinear lattice. Bright defect modes are supported by a local increase in nonlinearity, while dark defect modes are supported by a local decrease in nonlinearity. Dark solitons exist for both types of defects, although in the case of weak nonlinearity, they feature side bright humps, making the total energy propagating through the system larger than the energy transferred by the constant background. All considered defect modes are found stable. Dark solitons are characterized by relatively narrow windows of stability. Interactions of unstable dark solitons with bright and dark modes are described.

12.
Opt Lett ; 44(5): 1206-1209, 2019 Mar 01.
Article in English | MEDLINE | ID: mdl-30821749

ABSTRACT

We elaborate one- and two-dimensional (1D and 2D) models of media with self-repulsive cubic nonlinearity, whose local strength is subject to spatial modulation that admits the existence of flat-top solitons of various types, including fundamental ones, 1D multipoles, and 2D vortices. Previously, solitons of this type were only produced by models with competing nonlinearities. The present setting may be implemented in optics and Bose-Einstein condensates. The 1D version gives rise to an exact analytical solution for stable flat-top solitons, and generic families may be predicted by means of the Thomas-Fermi approximation. Stability of the obtained flat-top solitons is analyzed by means of the linear-stability analysis and direct simulations. Fundamental solitons and 1D multipoles with k=1 and 2 nodes, as well as vortices with winding number m=1, are completely stable. For multipoles with k≥3 and vortices with m≥2, alternating stripes of stability and instability are identified in their parameter spaces.

SELECTION OF CITATIONS
SEARCH DETAIL
...