Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Food Sci ; 89(1): 523-539, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38010727

ABSTRACT

Gluco-oligosaccharides (GlcOS) are potential prebiotics that positively modulate beneficial gut commensals like lactobacilli. For the rational design of GlcOS as prebiotics or combined with lactobacilli as synbiotics, it is important to establish the structure requirements of GlcOS and specificity toward lactobacilli. Herein, the utilization of 10 GlcOS with varied degrees of polymerization (DP) and glycosidic linkages by 7 lactobacilli strains (Levilactobacillus brevis ATCC 8287, Limosilactobacillus reuteri ATCC PTA 6475, Lacticaseibacillus rhamnosus ATCC 53103, Lentilactobacillus buchneri ATCC 4005, Limosilactobacillus fermentum FUA 3589, Lactiplantibacillus plantarum WCFS1, and Lactobacillus gasseri ATCC 33323) was studied. L. brevis ATCC 8287 was the only strain that grew on α/ß-(1→4/6) linked disaccharides, whereas other strains showed diverse patterns, dependent on the availability of genes encoding sugar transporters and catabolic enzymes. The effect of DP on GlcOS utilization was strain dependent. ß-(1→4) Linked cello-oligosaccharides (COS) supported the growth of L. brevis ATCC 8287 and L. plantarum WCFS1, and shorter COS (DP 2-3) were preferentially utilized over longer COS (DP 4-7) (consumption ≥90% vs. 40%-60%). α-(1→4) Linked maltotriose and maltodextrin (DP 2-11) were effectively utilized by L. brevis ATCC 8287, L. reuteri ATCC 6475, and L. plantarum WCFS1, but not L. fermentum FUA 3589. Growth of L. brevis ATCC 8287 on branched isomalto-oligosaccharides (DP 2-6) suggested preferential consumption of DP 2-3, but no preference between α-(1→6) and α-(1→4) linkages. The knowledge of the structure-specific GlcOS utilization by different lactobacilli from this study helps the structural rationale of GlcOS for prebiotic development.


Subject(s)
Limosilactobacillus reuteri , Probiotics , Synbiotics , Glycosides , Polymerization , Oligosaccharides/chemistry , Prebiotics , Probiotics/metabolism
2.
J Ovarian Res ; 16(1): 193, 2023 Sep 18.
Article in English | MEDLINE | ID: mdl-37723573

ABSTRACT

BACKGROUND: Evaluating the efficacy of letrozole overlapped with gonadotropin-modified letrozole protocol (mLP) for diminished ovarian reserve (DOR) or advanced-age women with repeated cycles. METHODS: This is a retrospectively registered, paired-match study including 243 women with DOR and 249 women aged over 40 years old who received in vitro fertilization (IVF) treatment. 123 women received stimulation with mLP (mLP group). GnRH agonist (GnRH-a) long, GnRH antagonist (GnRH-anta), and mild stimulation protocol were used as controls with 123 women in each group. We further analyzed 50 of 123 patients in the mLP group who have experienced more than one failed cycles with other ovarian stimulation protocols (non-mLP group). Clinical pregnancy rate (CPR), cumulative clinical pregnancy rate (CCPR), and live birth rate (LBR) were main outcomes. RESULTS: The CPR in the mLP group (38.46%) was significantly higher than mild stimulation (17.11%), but not significantly different from GnRH-a long (26.13%) and GnRH-anta (29.17%) group. The CCPR showed an increasing trend in the mLP group (33.33%) although without significance when compared with controls. The CCRP of GnRH-a long, GnRH-anta, mild stimulation group were 21.68%, 29.03%, and 13.04%, respectively. In women with repeated cycles, mLP achieved the higher available embryo rate (P < 0.05), the top-quality embryo rate, the CPR (P < 0.001), and the LBR (P < 0.001). Further study showed a positive correlation between testosterone and the number of oocytes retrieved in the mLP group (r = 0.395, P < 0.01). CONCLUSION: The mLP may be effective for aged or DOR women who have experienced previous cycle failure by improving the quality of embryos, the CPR, and the LBR. An increasing serum testosterone level may reflect follicular growth during ovarian stimulation.


Subject(s)
Gonadotropins , Ovarian Diseases , Pregnancy , Humans , Female , Adult , Middle Aged , Aged , Letrozole/pharmacology , Letrozole/therapeutic use , Hormone Antagonists , Fertilization in Vitro , Testosterone , Gonadotropin-Releasing Hormone
3.
Compr Rev Food Sci Food Saf ; 22(4): 2611-2651, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37073416

ABSTRACT

Prebiotics have long been used to modulate the gut microbiota and improve host health. Most established prebiotics are nondigestible carbohydrates, especially short-chain oligosaccharides. Recently, gluco-oligosaccharides (GlcOS) with 2-10 glucose residues and one or more O-glycosidic linkage(s) have been found to exert prebiotic potentials (not fully established prebiotics) because of their selective fermentation by beneficial gut bacteria. However, the prebiotic effects (non-digestibility, selective fermentability, and potential health effects) of GlcOS are highly variable due to their complex structure originating from different synthesis processes. The relationship between GlcOS structure and their potential prebiotic effects has not been fully understood. To date, a comprehensive summary of the knowledge of GlcOS is still missing. Therefore, this review provides an overview of GlcOS as potential prebiotics, covering their synthesis, purification, structural characterization, and prebiotic effect evaluation. First, GlcOS with different structures are introduced. Then, the enzymatic and chemical processes for GlcOS synthesis are critically reviewed, including reaction mechanisms, substrates, catalysts, the structures of resultant GlcOS, and the synthetic performance (yield and selectivity). Industrial separation techniques for GlcOS purification and structural characterization methods are discussed in detail. Finally, in vitro and in vivo studies to evaluate the non-digestibility, selective fermentability, and associated health effects of different GlcOS are extensively reviewed with a special focus on the GlcOS structure-function relationship.


Subject(s)
Gastrointestinal Microbiome , Prebiotics , Oligosaccharides , Fermentation
4.
Food Res Int ; 165: 112436, 2023 03.
Article in English | MEDLINE | ID: mdl-36869469

ABSTRACT

Glucose-based short-chain oligosaccharides (gluco-oligosaccharides, GlcOS) have been established as functional food ingredients with health-promoting properties. Currently, GlcOS (e.g., isomalto-oligosaccharides, IMOs) are commercially produced via enzymatic processes, which face the challenges of low yield and high cost. Therefore, developing efficient technologies for large-scale production of prebiotic GlcOS is highly desirable. Herein, a facile chemical process was developed to synthesize GlcOS as potential prebiotics via enhanced dehydration condensation of glucose in concentrated sulfuric acid (60-92 %). The maximum GlcOS yield of 83 % was achieved under the optimal condition of 50 % initial glucose loading, 76 % H2SO4, 70 °C, and 20 min. Structural analysis revealed that the synthesized GlcOS are mainly short-chain oligomers with a degree of polymerization (DP) between 2 and 4 (46 % DP 2, 22 % DP 3, 12 % DP 4) and a small percentage of larger oligosaccharides (DP 5-9), which are linked by predominantly α- and ß-(1→6) linkages along with (1→4), (1→ 3), (1→2), and (1↔1) linkages. In vitro fermentation experiments by probiotic Bifidobacterium bifidum ATCC 29521, Bifidobacterium animalis subsp. lactis DSM 10140, and Limosilactobacillus reuteri ATCC 6475 indicated that the GlcOS can be utilized as a carbon source for bacterial growth, and their promotion effect was overall comparable to three commercial prebiotic IMOs. GlcOS were also successfully synthesized from maltose and cellobiose with similar yield and structures to those from glucose, implying the possibility of synthesizing the prebiotic GlcOS directly from inexpensive starch and cellulose.


Subject(s)
Bifidobacterium animalis , Probiotics , Glycosides , Prebiotics , Bacteria , Glucose , Oligosaccharides
5.
Bioresour Technol ; 249: 1-8, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29035726

ABSTRACT

Effects of nonionic surfactants on enzymatic hydrolysis of Avicel at different agitation rates and solid loadings and the mechanism were studied. Nonionic surfactants couldn't improve the enzymatic hydrolysis efficiency at 0 and 100rpm but could enhance the enzymatic hydrolysis significantly at high agitation rate (200 and 250rpm). Cellulase was easily deactivated at high agitation rate and the addition of nonionic surfactants can protect against the shear-induced deactivation, especially when the cellulase concentration was low. When 25mg protein/L of cellulase solution was incubated at 200rpm for 72h, the enzyme activity increased from 36.0% to 89.5% by adding PEG4600. Moreover nonionic surfactants can compete with enzyme in air-liquid interface and reduce the amount of enzyme exposed in the air-liquid interface. The mechanism was proposed that nonionic surfactants could enhance the enzymatic hydrolysis of Avicel by reducing the cellulase deactivation caused by shear force and air-liquid interface.


Subject(s)
Cellulase , Cellulose , Hydrolysis , Surface-Active Agents
6.
Bioresour Technol ; 243: 1141-1148, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28764128

ABSTRACT

Some zwitterionic surfactants exhibit upper critical solution temperature (UCST) in aqueous solutions. For the zwitterionic surfactant solution mixed with cellulase, when its temperature is below UCST, the cellulase can be recovered by coprecipitation with zwitterionic surfactant. In this work, 3-(Hexadecyldimethylammonio) propanesulfonate (SB3-16) was selected to enhance the enzymatic hydrolysis of lignocelluloses and recover the cellulase. After adding 2mmol/L of SB3-16, the enzymatic digestibility of eucalyptus pretreated by dilute acid (Eu-DA) and by sulfite (Eu-SPORL) increased from 27.9% and 35.1% to 72.6% and 89.7%, respectively. The results showed that SB3-16 could reduce the non-productive adsorption of cellulase on hydrophobic interface, while it did not significantly inhibit the activity of cellulase. For the solution contained 1wt% SB3-16 and 200mg protein/L CTec2 cellulase, 55.2% of protein could be recovered by cooling. The filter paper activity of the recovered cellulase was 1.93FPU/mg protein, which was 95.8% of its initial activity.


Subject(s)
Cellulase , Lignin , Temperature , Hydrolysis , Surface-Active Agents
7.
Bioresour Technol ; 227: 74-81, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28013139

ABSTRACT

Polyvinylpyrrolidone (PVP) is an antifouling polymer to resist the adsorption of protein on solid surface. Effects of PVP on the enzymatic hydrolysis of pretreated lignocelluloses and its mechanism were studied. Adding 1g/L of PVP8000, the enzymatic digestibility of eucalyptus pretreated by dilute acid (Eu-DA) was increased from 28.9% to 73.4%, which is stronger than the classic additives, such as PEG, Tween and bovine serum albumin. Compared with PEG4600, the adsorption of PVP8000 on lignin was larger, and the adsorption layer was more stable and hydrophilic. Therefore, PVP8000 reduced 73.1% of the cellulase non-productive adsorption on lignin and enhanced the enzymatic hydrolysis of lignocelluloses greatly.


Subject(s)
Lignin/chemistry , Povidone/chemistry , Adsorption , Cellulase/chemistry , Eucalyptus/chemistry , Eucalyptus/metabolism , Hydrolysis , Lignin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...