Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Microbiol Biotechnol ; 108(1): 359, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38836885

ABSTRACT

Vacuum foam drying (VFD) has been shown to improve the thermostability and long-term shelf life of Newcastle Disease Virus (NDV). This study optimized the VFD process to improve the shelf life of NDV at laboratory-scale and then tested the optimized conditions at pilot-scale. The optimal NDV to T5 formulation ratio was determined to be 1:1 or 3:2. Using the 1:1 virus to formulation ratio, the optimal filling volumes were determined to be 13-17% of the vial capacity. The optimized VFD process conditions were determined to be at a shelf temperature of 25℃ with a minimum overall drying time of 44 h. The vaccine samples prepared using these optimized conditions at laboratory-scale exhibited virus titer losses of ≤ 1.0 log10 with residual moisture content (RMC) below 3%. Furthermore, these samples were transported for 97 days around China at ambient temperature without significant titer loss, thus demonstrating the thermostability of the NDV-VFD vaccine. Pilot-scale testing of the NDV-VFD vaccine at optimized conditions showed promising results for up-scaling the process as the RMC was below 3%. However, the virus titer loss was slightly above 1.0 log10 (approximately 1.1 log10). Therefore, the NDV-VFD process requires further optimization at pilot scale to obtain a titer loss of ≤ 1.0 log10. Results from this study provide important guidance for possible industrialization of NDV-VFD vaccine in the future. KEY POINTS: • The process optimization and scale-up test of thermostable NDV vaccine prepared through VFD is reported for the first time in this study. • The live attenuated NDV-VFD vaccine maintained thermostability for 97 days during long distance transportation in summer without cold chain conditions. • The optimized NDV-VFD vaccine preparations evaluated at pilot-scale maintained acceptable levels of infectivity after preservation at 37℃ for 90 days, which demonstrated the feasibility of the vaccine for industrialization.


Subject(s)
Newcastle Disease , Newcastle disease virus , Temperature , Viral Vaccines , Newcastle disease virus/immunology , Newcastle disease virus/chemistry , Pilot Projects , Newcastle Disease/prevention & control , Newcastle Disease/virology , Viral Vaccines/chemistry , Viral Vaccines/immunology , Vacuum , Animals , Chickens , Desiccation , China , Drug Stability , Viral Load
2.
AAPS PharmSciTech ; 23(8): 291, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36319901

ABSTRACT

Vaccines used for managing Newcastle disease virus (NDV) rely heavily on cold chain, and this results in major constraints in their successful application, shipping, and storage. This study was undertaken to improve the thermotolerance properties of live attenuated NDV vaccines using vacuum foam drying (VFD) technology. The live attenuated NDV vaccine formulated in 15% trehalose, 2.5% gelatin, 0.05% pluronic, and 25 mmol/L potassium phosphate buffer (T5) and dried using VFD showed improved heat tolerance in comparison to the vaccine formulated in T5 as well, but dried using freeze-drying (FD) method. The T5-formulated VFD vaccine was stored at 37°C for 120 days, 45°C for 7 days, and 60°C for 3 days; the virus titer loss decreased by no more than 1.0 Log10. In contrast, the FD vaccine prepared in T5 could only be stored at 37°C for 7-10 days. Furthermore, the T5-formulated NDV-VFD vaccine remained infectious when heated at 100°C for 30 min. Shelf-life studies confirmed the improved thermal tolerance of the T5-formulated NDV-VFD vaccine since it could be stably stored at 2-8°C for 42 months and 25°C for 15 months. Moreover, immunization of 1-month-old specific pathogen-free (SPF) chickens with the T5-formulated NDV-VFD vaccine stored at 25 and 37°C could produce hemagglutination inhibition (HI) antibody levels comparable to those of commercial NDV-FD vaccines, which require strict adherence to the cold chain. In conclusion, not only did the VFD technology improve the thermostability and long-term shelf life of the vaccine, it also maintained its immunogenicity.


Subject(s)
Chickens , Newcastle disease virus , Animals , Vaccines, Attenuated , Vacuum , Specific Pathogen-Free Organisms
SELECTION OF CITATIONS
SEARCH DETAIL
...