Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 3053, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38594234

ABSTRACT

Creating circularly polarized organic afterglow system with elevated triplet energy levels, suppressed non-radiative transitions, and effective chirality, which are three critical prerequisites for achieving blue circularly polarized afterglow, has posed a formidable challenge. Herein, a straightforward approach is unveiled to attain blue circularly polarized afterglow materials by covalently self-confining isolated chiral chromophore within polymer matrix. The formation of robust hydrogen bonds within the polymer matrix confers a distinctly isolated and stabilized molecular state of chiral chromophores, endowing a blue emission band at 414 nm, lifetime of 3.0 s, and luminescent dissymmetry factor of ~ 10-2. Utilizing the synergistic afterglow and chirality energy transfer, full-color circularly polarized afterglow systems are endowed by doping colorful fluorescent molecules into designed blue polymers, empowering versatile applications. This work paves the way for the streamlined design of blue circularly polarized afterglow materials, expanding the horizons of circularly polarized afterglow materials into various domains.

2.
Nat Commun ; 14(1): 475, 2023 Jan 30.
Article in English | MEDLINE | ID: mdl-36710271

ABSTRACT

High-efficiency narrowband emission is always in the central role of organic optoelectronic display applications. However, the development of organic afterglow materials with sufficient color purity and high quantum efficiency for hyperafterglow is still great challenging due to the large structural relaxation and severe non-radiative decay of triplet excitons. Here we demonstrate a simple yet efficient strategy to achieve hyperafterglow emission through sensitizing and stabilizing isolated fluorescence chromophores by integrating multi-resonance fluorescence chromophores into afterglow host in a single-component copolymer. Bright multicolor hyperafterglow with maximum photoluminescent efficiencies of 88.9%, minimum full-width at half-maximums (FWHMs) of 38 nm and ultralong lifetimes of 1.64 s under ambient conditions are achieved. With this facilely designed polymer, a large-area hyperafterglow display panel was fabricated. By virtue of narrow emission band and high luminescent efficiency, the hyperafterglow presents a significant technological advance in developing highly efficient organic afterglow materials and extends the domain to new applications.

3.
Polymers (Basel) ; 11(12)2019 Dec 10.
Article in English | MEDLINE | ID: mdl-31835501

ABSTRACT

A versatile, facile, energy-saving, low-cost and plant-inspired self-assembly strategy was used to prepare super-hydrophobic coating in this study. Concretely, an appealing super-hydrophobicity surface was obtained by designing a molecular building block phytic acid (PA)-Fe (III) complex to anchor the substrate and hydrophobic thiol groups (HT). The facile and green modification method can be applied to variety of substrates. The as-prepared PA-Fe (III)-HT coated melamine composite sponge possesses both super-hydrophobic and superlipophilicity property. Moreover, it displays superior efficiency to separate the oil-water mixture and splendid oil spill cleanup.

SELECTION OF CITATIONS
SEARCH DETAIL
...