Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
Regen Biomater ; 11: rbae027, 2024.
Article in English | MEDLINE | ID: mdl-38605854

ABSTRACT

Poor bone growth remains a challenge for degradable bone implants. Montmorillonite and strontium were selected as the carrier and bone growth promoting elements to prepare strontium-doped montmorillonite coating on Mg-Ca alloy. The surface morphology and composition were characterized by SEM, EDS, XPS, FT-IR and XRD. The hydrogen evolution experiment and electrochemical test results showed that the Mg-Ca alloy coated with Sr-MMT coating possessed optimal corrosion resistance performance. Furthermore, in vitro studies on cell activity, ALP activity, and cell morphology confirmed that Sr-MMT coating had satisfactory biocompatibility, which can significantly avail the proliferation, differentiation, and adhesion of osteoblasts. Moreover, the results of the 90-day implantation experiment in rats indicated that, the preparation of Sr-MMT coating effectively advanced the biocompatibility and bone repair performance of Mg-Ca alloy. In addition, The Osteogenic ability of Sr-MMT coating may be due to the combined effect of the precipitation of Si4+ and Sr2+ in Sr-MMT coating and the dissolution of Mg2+ and Ca2+ during the degradation of Mg-Ca alloy. By using coating technology, this study provides a late-model strategy for biodegradable Mg alloys with good corrosion resistance, biocompatibility. This new material will bring more possibilities in bone repair.

2.
Regen Biomater ; 11: rbae001, 2024.
Article in English | MEDLINE | ID: mdl-38343880

ABSTRACT

Biliary stenting is an important interventional method for the prevention and treatment of biliary tract diseases. However, complications, such as postoperative biliary infection and restenosis, frequently occur due to the extensive scope of the biliary system and the complex composition of bile. The combination of coating technology and biliary stents is expected to bring new approaches to the solution of these problems. The cutting-edge advance on functional coatings on biliary stents is reviewed from seven perspectives: anticorrosion, -bacterial, -tumor, stone-dissolving, X-ray visibility, antistent migration and functional composite coatings. The development trend is also discussed. Overall, the performance of the numerous functional coatings for various purposes is generally up to expectations, but the balance between the medications' effectiveness and their safety needs to be further adjusted. Many contemporary investigations have advanced to the level of animal experiments, offering crucial fundamental assurance for broader human studies. The combination of biliary stents and functional coatings is an innovative idea with great potential for future development.

3.
J Funct Biomater ; 14(9)2023 Sep 12.
Article in English | MEDLINE | ID: mdl-37754884

ABSTRACT

(1) Background: Traditional dressings can only superficially cover the wound, they have widespread issues with inadequate bacterial isolation and liquid absorption, and it is simple to inflict secondary wound injury when changing dressings. Therefore, it is crucial for wound healing to develop a new kind of antimicrobial colloidal dressing with good antibacterial, hygroscopic, and biocompatible qualities. (2) Methods: Ag-montmorillonite/chitosan (Ag-MMT/CS) colloid, a new type of antibacterial material, was prepared from two eco-friendly materials-namely, montmorillonite and chitosan-as auxiliary materials, wherein these materials were mixed with the natural metal Ag, which is an antibacterial agent. The optimum preparation technology was explored, and Ag-MMT/CS was characterized. Next, Staphylococcus aureus, which is a common skin infection bacterium, was considered as the experimental strain, and the in vitro antibacterial activity and cytocompatibility of the Ag-MMT/CS colloid were investigated through various experiments. Subsequently, a rat skin infection model was established to explore the in vivo antibacterial effect. (3) Results: In vitro studies revealed that the Ag-MMT/CS colloid had a good antibacterial effect on S. aureus, with an inhibition zone diameter of 18 mm and an antibacterial rate of 99.18%. After co-culture with cells for 24 h and 72 h, the cell survival rates were 88% and 94%, respectively. The cells showed normal growth and proliferation, and no evident dead cells were observed under the laser confocal microscope. After applying the colloid to the rat skin infection model, the Ag-MMT/CS treatment group exhibited faster wound healing and better local exudation and absorption in the wound than the control group, suggesting that the Ag-MMT/CS colloid exhibited a better antibacterial effect on the S. aureus. (4) Conclusions: Ag+, chitosan, and MMT present in the Ag-MMT/CS colloid dressing exert synergistic effects, and it has good antibacterial effects, cytocompatibility, and hygroscopicity, indicating that this colloid has the potential to become a next-generation clinical antibacterial dressing.

4.
J Colloid Interface Sci ; 649: 867-879, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37390534

ABSTRACT

Rapid corrosion and bacterial infection are obstacles to put into use biodegradable magnesium (Mg) alloy as biomedical materials. In this research, an amorphous calcium carbonate (ACC)@curcumin (Cur) loaded poly-methyltrimethoxysilane (PMTMS) coating prepared by self-assembly method on micro-arc oxidation (MAO) coated Mg alloy has been proposed. Scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy are adopted to analyze the morphology and composition of the obtained coatings. The corrosion behaviour of the coatings is estimated by hydrogen evolution and electrochemical tests. The spread plate method without or with 808 nm near-infrared irradiation is applied to evaluate the antimicrobial and photothermal antimicrobial ability of the coatings. Cytotoxicity of the samples is tested by 3-(4,5)-dimethylthiahiazo(-z-y1)-2,5-di- phenytetrazoliumromide (MTT) and live/dead assay culturing with MC3T3-E1 cells. Results show that the MAO/ACC@Cur-PMTMS coating exhibited favourable corrosion resistance, dual antibacterial ability, and good biocompatibility. Cur was employed as an antibacterial agent and photosensitizer for photothermal therapy. The core of ACC significantly improved the loading of Cur and the deposition of hydroxyapatite corrosion products during degradation, which greatly promoted the long-term corrosion resistance and antibacterial activity of Mg alloys as biomedical materials.


Subject(s)
Curcumin , Corrosion , Anti-Bacterial Agents , Alloys , Biocompatible Materials , Magnesium , Calcium Carbonate , Coated Materials, Biocompatible
5.
Bioact Mater ; 26: 279-291, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36950154

ABSTRACT

Mg-1 wt.% Li-1 wt.% Ca (LX11) and Mg-4 wt.% Li-1 wt.% Ca (LX41) alloys share the same hexagonal closed-packed crystalline structure. However, the differences in microstructure, mechanical properties, and degradation rates between the two alloys are not well understood. Hereby, the above three aspects of LX11 and LX41 alloys were studied via optical microscopy, tensile tests, and electrochemical polarization and electrochemical impedance spectroscopy, together with hydrogen evolution. The concentration of the released Mg2+, Ca2+, and Li+ ions was analyzed using a flame atomic absorption spectrophotometer. Results demonstrated that the LX11 alloy was composed of finer α-Mg grains, fewer twins, and smaller volume fractions of the intermetallic phases Mg2Ca than the LX41 alloy. The increasing Li concentration generated a weak decrease in the yield strength of the Mg-Li-Ca alloys, a remarkable increase in elongation to failure, and a stable ultimate tensile strength. The LX11 alloy had better corrosion resistance than the LX41 alloy. The release rate of the cations (Mg2+, Ca2+, and Li+) varied significantly with time. The release rate of metallic ions in Hank's solution cannot reflect the true corrosion rate of Mg-Li-Ca alloys due to the formation of the precipitated corrosion products and their difference in solubility. The dealloying corrosion mechanism of the Mg2Ca phase in Mg-Li-Ca alloys was proposed.

6.
J Colloid Interface Sci ; 630(Pt A): 833-845, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36279842

ABSTRACT

This work reports the design and preparation of novel organic (polyvinyl alcohol, PVA)-inorganic (neodymium nitrate, Nd(NO3)3) hybrid coatings on micro-arc oxidation (MAO) coating for magnesium (Mg) alloy corrosion protection. X-ray diffractometer, X-ray photoelectron spectroscopy, fourier transform infrared spectroscopy, field emission scanning electron microscope, Energy Dispersive X-ray spectrometer and surface roughness were applied to characterize the chemical composition and surface morphology of the coatings. The corrosion resistance of the coatings was evaluated by electrochemical and salt spray tests. The results suggested that the formation of PVA-Nd3+ and PVA-Mg2+ complexes promoted the enrichment of Nd3+ on the surface, and thereby improved the sealing quality and compactness of the coating. Interestingly, when the coating was damaged, the Nd3+ ions were transformed to their carbonates and covered the active sites, and thus exhibiting self-healing function. Further, the corrosion resistance of PVA-Nd3+ modified MAO composite coating on AZ31 Mg alloy was improved.

7.
Nanoscale ; 14(23): 8429-8440, 2022 Jun 16.
Article in English | MEDLINE | ID: mdl-35642496

ABSTRACT

Smart polymeric coatings with early corrosion self-warning and damage self-repairing characteristics have garnered tremendous interest due to their ability to sense corrosion reactions and repair coating defects. However, tracking the repair process and its underlying protection mechanism is highly challenging. Herein, we report the construction of a novel composite coating by incorporating multifunctional nanosensors (graphene oxide-zeolitic imidazole frameworks loaded with 1,10-phenanthroline) into a thermo-responsive polyurethane. Under damaging events, the localized acidity derived from metal corrosion stimulates the decomposition of the nanosensors to produce 1,10-phenanthroline and benzimidazole. The generated ferrous ions are rapidly sensed by the released 1,10-phenanthroline to produce a conspicuous red color, which warns of the corrosion occurrence. In profiting from the photothermal effect of graphene oxide, the composite coating exhibits efficient crack closure behavior under near-infrared light irradiation. Morphology observation indicates that a coating scratch (about 30 µm wide) almost closed with 20 s of irradiation. The photothermally activated crack closure combined with benzimidazole inhibition endows the prepared coating with superior self-repairing performance. Interestingly, the change in color intensity around the coating defect can assist in tracking the repair process. Therefore, this work provides a novel strategy to visualize microscopic behaviors during damage and repair processes.

8.
Bioact Mater ; 18: 284-299, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35387161

ABSTRACT

Surgical failures, caused by postoperative infections of bone implants, are commonly met, which cannot be treated precisely with intravenous antibiotics. Photothermal therapy (PTT) and photodynamic therapy (PDT) have attracted widespread attention due to their non-invasive antibacterial effects on tissues and no bacterial resistance, which may be an excellent approach to solve infections related to bone implants for biodegradable magnesium alloys. Herein, a sodium copper chlorophyllin (SCC) with a porphyrin ring induced Ca-P coating was prepared on AZ31 magnesium alloy via layer-by-layer (LbL) assembly. The morphology and composition of the samples were characterized through field emission scanning electron microscope (FE-SEM) with affiliated energy dispersive spectrometer (EDS), X-ray diffractometer (XRD), and Fourier infrared spectrometer (FTIR) and X-ray photoelectron spectrometer (XPS) as well. Potentiodynamic polarization, electrochemical impedance spectroscopy (EIS) and hydrogen evolution experiments were employed to evaluate the corrosion behavior of the samples. Atomic absorption spectrophotometer was used to measure Cu elemental content of different immersion periods. Cytocompatibility and antibacterial performance of the coatings were probed using in vitro cytotoxicity tests (MTT assay), live/dead cell staining and plate counting method. The results showed that the obtained (Ca-P/SCC)10 coating exhibited good corrosion resistance, antimicrobial activity (especially under 808 nm irradiation) and biocompatibility. The antibacterial rates for E. coli and S. aureus were 99.9% and 99.8%, respectively; and the photothermal conversion efficiency was as high as 42.1%. Triple antibacterial mechanisms including photodynamic, photothermal reactions and copper-ions release were proposed. This coating exhibited a promising application for biodegradable magnesium alloys.

9.
J Colloid Interface Sci ; 616: 605-617, 2022 Jun 15.
Article in English | MEDLINE | ID: mdl-35231704

ABSTRACT

Polyaniline (PANI)/Epoxy copolymer as a core material was synthesized via a chemical oxidation method. Various analytical techniques, including scanning electron microscope, Fourier transform infrared spectroscopy, energy dispersive spectroscopy, thermogravimetry, and electrochemical impedance spectroscopy, were used to characterize the morphology, compositions, and self-healing and anticorrosion properties of the prepared microcapsules and coatings. The prepared PANI/Epoxy copolymer showed the best electrochemical corrosion resistance when the ratio of PANI to epoxy was 0.05: 1 (wt.:wt.). For the mass fraction of the core (PANI/Epoxy copolymer) of 60.84 ± 0.06 wt%, the mean particle diameter of the prepared microcapsules was 4.20 ± 0.92 µm. The coatings with 15 wt% microcapsules possessed excellent self-healing performance and corrosion resistance. The low-frequency impedance modulus at 0.01 Hz of scratched coatings immersed in the NaCl solution for 24 h was 5.27 × 106 Ω·cm2. Scratched self-repairing coating samples were able to resist corrosion for 384 h; thus, the microcapsules can be used to significantly extend the service life of the coatings. Microcapsule-containing PANI/Epoxy copolymers are expected to find use in anticorrosion coating systems, where the coatings could be applied directly on rusty steel surfaces.

10.
J Funct Biomater ; 14(1)2022 Dec 26.
Article in English | MEDLINE | ID: mdl-36662062

ABSTRACT

Photoactivated sterilization has received more attention in dealing with implant-associated infections due to its advantages of rapid and effective bacteriostasis and broad-spectrum antibacterial activity. Herein, a micro-arc oxidation (MAO)/polymethyltrimethoxysilane (PMTMS)@hemin-induced calcium-bearing phosphate microsphere (Hemin-CaP) coating was prepared on pure magnesium (Mg) via MAO processing and dipping treatments. The morphology and composition of the coating were characterized via scanning electron microscopy, Fourier transform infrared spectrometer, X-ray diffractometer and X-ray photoelectron spectrometer. Corrosion behavior was evaluated through electrochemical and hydrogen evolution tests. The release of Fe3+ ions at different immersion times was measured with an atomic absorption spectrophotometer. Antibacterial performance and cytotoxicity were assessed using the spread plate method, MTT assay and live/dead staining experiment. The results showed that the corrosion current density of the MAO/PMTMS@(Hemin-CaP) coating (4.41 × 10-8 A·cm-2) was decreased by two orders of magnitude compared to that of pure Mg (3.12 × 10-6 A·cm-2). Photoactivated antibacterial efficiencies of the Hemin-CaP microspheres and MAO/PMTMS@(Hemin-CaP) coating reached about 99% and 92%, respectively, which we attributed to the photothermal and photodynamic properties of hemin with a porphyrin ring. Moreover, based on the release of Fe3+ ions, the MC3T3-E1 pre-osteoblasts' viability reached up to 125% after a 72 h culture, indicating a positive effect of the coating in promoting cell growth. Thus, this novel composite coating holds a promising application as bone implants.

11.
Bioact Mater ; 6(12): 4729-4757, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34136723

ABSTRACT

Magnesium (Mg) and its alloys, as potential biodegradable materials, have drawn wide attention in the cardiovascular stent field because of their appropriate mechanical properties and biocompatibility. Nevertheless, the occurrence of thrombosis, inflammation, and restenosis of implanted Mg alloy stents caused by their poor corrosion resistance and insufficient endothelialization restrains their anticipated clinical applications. Numerous surface treatment tactics have mainly striven to modify the Mg alloy for inhibiting its degradation rate and enduing it with biological functionality. This review focuses on highlighting and summarizing the latest research progress in functionalized coatings on Mg alloys for cardiovascular stents over the last decade, regarding preparation strategies for metal oxide, metal hydroxide, inorganic nonmetallic, polymer, and their composite coatings; and the performance of these strategies in regulating degradation behavior and biofunction. Potential research direction is also concisely discussed to help guide biological functionalized strategies and inspire further innovations. It is hoped that this review can give assistance to the surface modification of cardiovascular Mg-based stents and promote future advancements in this emerging research field.

12.
Huan Jing Ke Xue ; 41(12): 5381-5388, 2020 Dec 08.
Article in Chinese | MEDLINE | ID: mdl-33374054

ABSTRACT

Based on the seasonal changes in the nitrogen and phosphorus concentrations in Hanfeng Lake from March 2017 to February 2018, the nutrient limitation status was evaluated by the stoichiometric molar ratio of nitrogen and phosphorus. The results showed that the average concentrations of TN, DN, and NO3--N were 1.60, 1.25, and 0.91 mg·L-1 in Hanfeng Lake, respectively. The seasonal changes of those indicators were similar, showing the highest concentration in winter and lowest in summer. NO3--N accounted for TN significantly in the water body, and the concentrations of NH4+-N and NO2--N remained at low levels and changed steadily. The average concentrations of TP, DP, and PO43--P were 0.13, 0.09, and 0.06 mg·L-1, respectively. The changes in the concentrations of TP and DP were similar, showing a trend of increasing in spring and summer, and then decreasing in autumn and winter, while the PO43--P concentration showed the trend of fluctuated decrease. TN/TP varied from 11.07 to 56.02, with an average value of 29.23. TN/TP changed seasonally, with the highest value occurring in winter and the lowest value in summer. The conditions of the water body were conducive to growth and reproduction of algae for most of the time during sampling months. The water body was occasionally nitrogen limited and rarely phosphorus limited. The seasonal variation in TN/TP ratio was affected by several factors such as rainfall runoff, fertilizer use, sewage discharge, and aquatic biological activities. Further, protection strategies were proposed for the improvement of the water body in terms of present water quality characteristics in Hanfeng Lake.

13.
Bioact Mater ; 5(4): 902-916, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32637753

ABSTRACT

Biodegradable magnesium alloys are challenging to be implanted in patients with hyperglycemia and diabetes. A hypothesis is suggested that glucose accelerates microbial ingress and in vitro degradation of Mg-Li-Ca implants. Corrosion resistance and mechanical properties was demonstrated using electrochemical, hydrogen evolution and tensile tests. The bacteria from Hank's solution were isolated via 16S rRNA gene analysis. The results revealed that Mg-1Li-1Ca alloy exhibited different responses to Hank's solution with and without glucose. The solution acidity was ascribed to Microbacterium hominis and Enterobacter xiangfangensis, indicating that glucose promoted microbial activity and degradation and deterioration in mechanical property of Mg-1Li-1Ca alloy.

14.
Bioact Mater ; 5(2): 398-409, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32258829

ABSTRACT

Protein exerts a critical influence on the degradation behavior of absorbable magnesium (Mg)-based implants. However, the interaction mechanism between protein and a micro-arc oxidation (MAO) coating on Mg alloys remains unclear. Hereby, a MAO coating was fabricated on AZ31 Mg alloy. And its degradation behavior in phosphate buffer saline (PBS) containing bovine serum albumin (BSA) was investigated and compared with that of the uncoated alloy. Surface morphologies and chemical compositions were studied using Field-emission scanning electron microscope (FE-SEM), Fourier transform infrared spectrophotometer (FT-IR) and X-ray diffraction (XRD). The degradation behavior of the bare Mg alloy and its MAO coating was studied through electrochemical and hydrogen evolution tests. Cytotoxicity assay was applied to evaluate the biocompatibility of Mg alloy substrate and MAO coating. Results indicated that the presence of BSA decreased the degradation rate of Mg alloy substrate because BSA (RCH(NH2)COO‾) molecules combined with Mg2+ ions to form (RCH(NH2)COO)2Mg and thus inhibited the dissolution of Mg(OH)2 by impeding the attack of Cl‾ ions. In the case of MAO coated Mg alloy, the adsorption of BSA on MAO coating and the formation of (RCH(NH2)COO)2Mg exhibited a synergistic effect and enhanced the corrosion resistance of the coated alloy significantly. Furthermore, cell bioactive assay suggested that the MAO coating had good viability for MG63 cells due to its high surface area.

15.
Bioact Mater ; 5(2): 364-376, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32206738

ABSTRACT

Basically, Mg-Al layered double hydroxide (LDH) coatings are prepared on the surface of micro-arc oxidation (MAO) coated magnesium (Mg) alloys at a high temperature or a low pH value. This scenario leads to the growth rate of LDH coating inferior to the dissolution rate of the MAO coating. This in turn results in limited corrosion resistance of the composite coating. In this study, a Mg-Al LDH coating on MAO-coated Mg alloy AZ31 is prepared through a water bath with a higher pH (13.76) at a lower temperature (60 °C). FE-SEM, EDS, XRD, XPS, and FT-IR are applied to analyze the surface morphology, chemical compositions, and growth process. Electrochemical polarization, electrochemical impedance spectroscopy (EIS) and hydrogen evolution tests are employed to evaluate the corrosion resistance of the samples. The results disclose that the MAO coating is completely covered by the nanosheet-structured LDH coating with a thickness of approximately 3.8 µm. The corrosion current density of the MAO-LDH composite coating is decreased four orders of magnitude in comparison to its substrate; the presence of a wide passivation region in anodic polarization branch demonstrates its strong self-healing ability, indicating the hybrid coating possesses excellent corrosion resistance. The formation mechanism of the LDH coating on the MAO-coated Mg alloy is proposed. Furthermore, the cytocompatibility is assessed via an indirect extraction test for MC3T3-E1 pre-osteoblasts, which indicates an acceptable cytocompatibility of osteoblasts for the composite coating.

16.
Bioact Mater ; 5(2): 318-333, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32181417

ABSTRACT

The biocorrosion of magnesium in the external physiological environment is still difficult to accurately evaluate the degradation behavior in vivo, particularly, in the microenvironment of the patients with hyperglycemia or diabetes. Thus, we explored the synergistic effects of glucose and protein on the biodegradation of pure magnesium, so as to have a deeper understanding the mechanism of the degradation in vivo. The surface morphology and corrosion product composition of pure magnesium were investigated using SEM, EDS, FTIR, XRD and XPS. The effect of glucose and albumin on the degradation rate of pure magnesium was investigated via electrochemical and immersion tests. The adsorption of glucose and albumin on the sample surface was observed using fluorescence microscopy. The results showed that the presence of 2 g/L glucose changed the micromorphology of corrosion products on the magnesium surface by reacting with metal cations, thus inhibiting the corrosion of pure magnesium. Protein formed a barrier layer to protect the magnesium at early stage of immersion. The chelation reaction between protein and magnesium surface might accelerate the degradation at later stage. There may be a critical glucose (albumin) content. Biodegradation of pure magnesium was inhibited at low concentrations and promoted at high concentrations. The synergistic effect of glucose and protein restrained the adsorption of aggressive chloride ions to a certain extent, and thus inhibited the degradation of pure magnesium considerably. Moreover, XPS results indicated that glucose promoted the adsorption of protein on the sample surface.

17.
Nanoscale ; 12(14): 7700-7711, 2020 Apr 14.
Article in English | MEDLINE | ID: mdl-32211633

ABSTRACT

Inspired by lotus leaves, superhydrophobic surfaces (SHS) have been fabricated by many methods due to their various properties such as self-cleaning, anti-corrosion, and anti-biofouling properties. In recent years, inspired by Nepenthes pitcher plants, the 'slippery liquid-infused porous surface' (SLIPS) has attracted numerous researchers' attention because it not only shows ability corresponding to SHS but also exhibits durability in some aspects due to the continuous and homogeneous liquid-infused surfaces. In this paper, we firstly used a facile hydrothermal method and modification to fabricate SHS on a Mg alloy substrate. After the infusion of a lubricant by a spin-coating method, the transformation from the SHS to SLIPS can be achieved. The SLIPS exhibits an excellent self-cleaning property compared to the SHS, except that the water droplet rolls on the SHS and slides on the SLIPS. Moreover, the SLIPS demonstrates better anti-corrosion and anti-biofouling properties, and is obviously superior to SHS for use on the Mg alloy substrate. The enhanced anti-corrosion and anti-biofouling properties of the SLIPS are because the continuously infused lubricant replaces the air trapped in the micro-pores. Importantly, compared with SHS, the SLIPS shows excellent thermally assisted healing properties. The results of this work indicate that the SLIPS is expected to be an efficient method for improving the water-repellent, self-cleaning, anti-biofouling and anti-corrosion properties of magnesium alloys.

18.
Bioact Mater ; 5(1): 153-163, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32083229

ABSTRACT

Biodegradable magnesium (Mg)-based alloys have aroused great concern owing to their promising characteristics as temporary implants for orthopedic application. But their undesirably rapid corrosion rate under physiological conditions has limited the actual clinical application. This study reports the use of a novel biomimetic polyelectrolyte multilayer template, based on polyvinylpyrrolidone (PVP) and polyacrylic acid (PAA) via layer-by-layer (LbL) assembly, to improve the corrosion resistance of the alloy. Surface characterization techniques (field-emission scanning electron microscopy, Fourier transform infrared (FTIR) spectrophotometer and X-ray diffractometer) confirmed the formation of biomineralized Ca-P coating on AZ31 alloy. Both hydrogen evolution and electrochemical corrosion tests demonstrated that the corrosion protection of the polyelectrolyte-induced Ca-P coating on AZ31 alloy. The formation mechanism of biomineralized Ca-P coating was proposed.

19.
Bioact Mater ; 5(1): 34-43, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31956734

ABSTRACT

Micro-arc oxidation (MAO) coating with outstanding adhesion strength to Mg alloys has attracted more and more attention. However, owing to the porous structure, aggressive ions easily invaded the MAO/substrate interface through the through pores, limiting long-term corrosion resistance. Therefore, a dense and biocompatible tantalum oxide (Ta2O5) nanofilm was deposited on MAO coated Mg alloy AZ31 through atomic layer deposition (ALD) technique to seal the micropores and regulate the degradation rate. Surface micrography, chemical compositions and crystallographic structure were characterized using FE-SEM, EDS, XPS and XRD. The corrosion resistance of all samples was evaluated through electrochemical and hydrogen evolution tests. Results revealed that the Ta2O5 film mainly existed in the form of amorphousness. Moreover, uniform deposition of Ta2O5 film and effective sealing of micropores and microcracks in MAO coating were achieved. The current density (i corr) of the composite coating decreased three orders of magnitude than that of the substrate and MAO coating, improving corrosion resistance. Besides, the formation and corrosion resistance mechanisms of the composite coating were proposed.

20.
Mater Sci Eng C Mater Biol Appl ; 105: 110042, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31546440

ABSTRACT

Influences of proteins on degradation of magnesium alloys are of great significance but not well understood. In particular the roles of amino acids, the basic unit of proteins in regulating the progress of biodegradation of magnesium based materials remain unclear. This study aims to investigate the impacts of alanine, glutamic acid and lysine on degradation of pure magnesium in phosphate buffer solution through SEM, XPS, FTIR, potentiodynamic polarisation curves, electrochemical impedance spectroscopy and immersion tests. The changed contents of amino acids in solutions were detected by UV-vis spectrophotometer. Results demonstrate that the charges of the selected amino acids imposed significant contribution to suppressing the degradation of pure magnesium in phosphate buffer solution. The presence of amino acids led to the formation of phosphate-based corrosion products, increasing free corrosion potential, and reduction in corrosion current density and solution pH depending on their isoelectric points and molecular structures. A plausible corrosion mechanism organised by amino acids on pure magnesium was proposed.


Subject(s)
Amino Acids/chemistry , Magnesium/chemistry , Phosphates/chemistry , Buffers , Corrosion , Dielectric Spectroscopy , Electrochemistry , Humans , Hydrogen/analysis , Isoelectric Point , Molecular Conformation , Photoelectron Spectroscopy , Spectroscopy, Fourier Transform Infrared , Surface Properties , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...