Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 30(22): 40809-40819, 2022 Oct 24.
Article in English | MEDLINE | ID: mdl-36299008

ABSTRACT

Angle-resolved photoemission spectroscopy with nanoscale spatial resolution (Nano-ARPES) is a powerful tool for the investigation of electronic structures of materials and their spatial configurations. In order to capture the area of interest in Nano-ARPES measurements effectively, an optical microscope can be used to provide real space optical images as a reference. In this work, a new type of optical microscope for Nano-APRES spectrometer with a large tilt angle of ∼30 degrees and a long focal length of ∼12 mm has been designed. Large magnifications by 7 × to 20 × and a spatial resolution of 3 um have been achieved, which can effectively assist optical alignment for Nano-ARPES. In addition, the strong boundary sensitivity observed in such a tilt design demonstrates its special capability in detecting the fine features of surface coarseness.

2.
Opt Express ; 29(13): 19767-19789, 2021 Jun 21.
Article in English | MEDLINE | ID: mdl-34266080

ABSTRACT

Cylindrical surfaces widely used in high-energy laser systems can have nearly semi-meter-scale dimensions, and aperture angles can exceed R/3. State-of-the-art interferometric stitching test methods involve stitching only along the arc direction, and the reported dimensions of ∼50 × 50 mm2 are far smaller than those required in high-energy laser systems. To rectify this limitation, an interferometric stitching method for cylindrical surfaces with large apertures is proposed. Moreover, a subaperture stitching algorithm that can stitch along both the linear and arc directions is developed. An interferometric stitching workstation equipped with a six-axis motion stage and a series of computer-generated holograms is established, where cylindrical surfaces with R/# values as large as R/0.5 and apertures up to 700 mm can be tested based on the theoretical analysis. A convex cylindrical surface with a 350 × 380 mm2 aperture is tested to validate the proposed method's feasibility in enlarging the testable aperture of cylindrical surfaces significantly from Ф50 mm to Ф700 mm, thereby promoting the application of large cylindrical surfaces in high-energy laser systems.

3.
Opt Express ; 16(7): 4760-5, 2008 Mar 31.
Article in English | MEDLINE | ID: mdl-18542574

ABSTRACT

Applying the iterative stitching algorithm, we demonstrate the power of subaperture testing through experiments. Naturally the algorithm applies to flats, spherical or aspheric surfaces. We first apply it to a silicon carbide flat mirror with larger aperture than the interferometer's. The testing results help to obtain a high-precision mirror through five iterations of ion beam figuring. The second experiment is 37-subaperture testing of a large spherical mirror. Good consistence is observed between the stitching result and the full aperture test result using a Zygo interferometer. Finally we study the applicability of the algorithm to subaperture testing of a parabolic surface. The stitching result is consistent with the auto-collimation test result. Furthermore, the surface is tested with annular subapertures and also retrieved by our algorithm successfully.


Subject(s)
Algorithms , Computer-Aided Design , Equipment Failure Analysis/methods , Interferometry/instrumentation , Models, Theoretical , Optics and Photonics/instrumentation , Computer Simulation , Equipment Design
SELECTION OF CITATIONS
SEARCH DETAIL
...