Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 13(9): 11332-11343, 2021 Mar 10.
Article in English | MEDLINE | ID: mdl-33625832

ABSTRACT

Renewable biobased aerogels display a promising potential to fulfill the surging demand in various industrial sectors. However, its inherent low mechanical robustness, flammability, and lack of functionality are still huge obstacles in its practical application. Herein, a novel integrated leather solid waste (LSW)/poly(vinyl alcohol) (PVA)/polyaniline (PANI) aerogel with high mechanical robustness, flame retardancy, and electromagnetic interference (EMI) shielding performance was successfully prepared. Amino carboxyl groups in LSW could be effectively exposed by solid-state shear milling (S3 M) technology to form strong hydrogen-bond interactions with the PVA molecular chains. This led to a change in the compressive strength and the temperature of the initial dimensional change to 15.6 MPa and 112.7 °C at a thickness of 2.5 cm, respectively. Moreover, LSW contains a large number of N elements, which ensures a nitrogen-based flame-retardant mechanism and increase in the limit oxygen index value of LSW/PVA aerogel to 32.0% at a thickness of 2.5 mm. Notably, by the cyclic coating method, a conductive PANI layer could be polymerized on the surface of LSW/PVA aerogel, which led to the construction of a sandwich structure with impressive EMI shielding capability. The EMI shielding effectiveness (SE) reached more than 40 dB, and the specific shielding effectiveness (SSE) reached 73.0 dB cm3 g-1. The inherent dipoles in collagen fibers and the conductive PANI synergistically produced an internal multiple reflection and absorption mechanism. The comprehensive performance of LSW/PVA/PANI aerogel not only demonstrates a new strategy to recycle LSW in a more value-added way but also sheds some more light on the development of biomass aerogels with high-performance, environmentally friendly, and cost-effective properties.

2.
ACS Appl Mater Interfaces ; 12(46): 52038-52049, 2020 Nov 18.
Article in English | MEDLINE | ID: mdl-33156624

ABSTRACT

With the popularization of 5G communications and the internet of things, electromagnetic wave (EW) radiation pollution has aroused much concern from the public, and the search for new materials and technologies for preparing electromagnetic shielding materials still continues all around the world. However, the contradiction among high shielding performance, economic applicability, and flexibility is still not well balanced. Herein, we fabricated a novel foldable leather solid waste (LSW)/polyvinyl alcohol (PVA)/silver (Ag) paper with excellent electromagnetic interference (EMI)-shielding ability using a facile but sustainable electroless plating (ELP) method with LSW as the resource. Taking PVA as a cross-linker, debundled leather fibers (LFs) generated by solid-state shearing milling could generate a flexible LSW/PVA substrate with a high specific surface area, and eventually the deposited Ag layer served as a protective layer not only to significantly improve the mechanical and thermal robustness, but also to endow the LSW/PVA/Ag paper with good hydrophobicity, which could protect from potential moisture damage. In addition to the reflection effect of metallic Ag on EW, the hierarchical structure of collagen fibers played an important role in superior high EMI-shielding effectiveness (∼55-∼90 dB) by an absorption-dominant EMI-shielding mechanism. Furthermore, a multilayer LSW/PVA/Ag paper was also prepared with enhanced EMI-shielding effectiveness of 111.3 dB benefited by constructing multiple reflection-absorption interfaces. The high-performance, environmentally friendly, and low-cost EMI-shielding materials not only offered a new avenue toward recycling LSW in a more value-added way, but also displayed promising potential for application in flexible shielding materials or wearable clothing.

SELECTION OF CITATIONS
SEARCH DETAIL
...