Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 31(5): 7872-7888, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38170358

ABSTRACT

In order to meet the needs of refined landslide risk management, the extended correlation framework of dynamic susceptibility modeling desiderates to be further explored. This work considered the Wanzhou channel of the Three Gorges Reservoir Area as the experimental site, with a transportation channel with significant economic value to carry out innovative research in two stages. (i) Five machine learning models logistic regression (LR), multilayer perceptron neural network (MLPNN), support vector machine (SVM), random forest (RF), and decision tree (DT) were used to explore landslide susceptibility distribution based on detailed landslide boundaries. (ii) Based on the PS-InSAR technology, the dynamic factor of deformation intensity was obtained. Subsequently, the dynamic factor was combined with proposed static factors (topography conditions, geological conditions, hydrological conditions, and human activities) to generate dynamic landslide susceptibility mapping (DLSM). The receiver operating characteristic (ROC) curve, accuracy, precision, recall, and F1 score were proposed as evaluation metrics. Compared with ignoring the dynamic factor, the predictive accuracy of some models was further improved when considering the dynamic factor. Especially the DT model, the area under the curve of ROC (AUC) value increased by 2%, and obtained the highest AUC value (93.1%). The susceptibility results of introducing the dynamic factor are more in line with the spatial distribution of actual landslides. The research framework proposed in this study has important reference significance for the dynamic management and prevention of landslide disasters in the study area.


Subject(s)
Disasters , Landslides , Humans , Landslides/prevention & control , Geographic Information Systems , Neural Networks, Computer , Support Vector Machine
2.
Sci Rep ; 12(1): 11108, 2022 06 30.
Article in English | MEDLINE | ID: mdl-35773295

ABSTRACT

The monitoring and prediction of the groundwater level (GWL) significantly influence the landslide kinematics. Based on the long-term fluctuation characteristics of the GWL and the time lag of triggering factors, a dynamic prediction model of the GWL based on the Maximum information coefficient (MIC) algorithm and the long-term short-term memory (LSTM) model was proposed. The Sifangbei landslide in the Three Gorges Reservoir area (TGRA) in China, wherein eight GWL monitoring sensors were installed in different locations, was taken as a case study. The monitoring data represented that the fluctuation of the GWL has a specific time lag concerning the accumulated rainfall (AR) and the reservoir water level (RWL). In addition, there were spatial differences in the fluctuation of the GWL, which was controlled by the elevation and the micro landform. From January 19, 2015, to March 6, 2017, the measured data were used to set up the predicted models. The MIC algorithm was adopted to calculate the lag time of the GWL, the RWL, and the AR. The LSTM model is a time series prediction algorithm that can transmit historical information. The Gray wolf optimization (GWO) algorithm was used to seek the most suitable hyperparameter of the LSTM model under the specific prediction conditions. The single-factor GWO-LSTM model without considering triggering factors and the support vector machine regression (SVR) model were considered to compare the prediction results. The results indicate that the MIC-GWO-LSTM model reached the highest accuracy and improved the prediction accuracy by considering the factor selection process with the learner training process. The proposed MIC-GWO-LSTM model combines the advantages of each algorithm and effectively constructs the response relationship between the GWL fluctuation and triggering factors; it also provides a new exploration for the GWL prediction, monitoring, and early warning system in the TGRA.


Subject(s)
Groundwater , Landslides , Environment , Intelligence , Support Vector Machine , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...