Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Soft Matter ; 14(7): 1108-1119, 2018 Feb 14.
Article in English | MEDLINE | ID: mdl-29340434

ABSTRACT

Here we report a link between the interfacial structure and adhesive property of homopolymer chains physically adsorbed (i.e., via physisorption) onto solids. Polyethylene oxide (PEO) was used as a model and two different chain conformations of the adsorbed polymer were created on silicon substrates via the well-established Guiselin's approach: "flattened chains" which lie flat on the solid and are densely packed, and "loosely adsorbed polymer chains" which form bridges jointing up nearby empty sites on the solid surface and cover the flattened chains. We investigated the adhesion properties of the two different adsorbed chains using a custom-built adhesion testing device. Bilayers of a thick PEO overlayer on top of the flattened chains or loosely adsorbed chains were subjected to the adhesion test. The results revealed that the flattened chains do not show any adhesion even with the chemically identical free polymer on top, while the loosely adsorbed chains exhibit adhesion. Neutron reflectivity experiments corroborated that the difference in the interfacial adhesion is not attributed to the interfacial brodening at the free polymer-adsorbed polymer interface. Instead, coarse-grained molecular dynamics simulation results suggest that the tail parts of the loosely adsorbed chains act as "connector molecules", bridging the free chains and substrate surface and improving the interfacial adhesion. These findings not only shed light on the structure-property relationship at the interface, but also provide a novel approach for developing sticking/anti-sticking technologies through precise control of the interfacial polymer nanostructures.

2.
Soft Matter ; 12(6): 1801-9, 2016 Feb 14.
Article in English | MEDLINE | ID: mdl-26685723

ABSTRACT

The stability or wettability of thin polymer films on solids is of vital interest in traditional technologies as well as in new emerging nanotechnologies. We report here that nanoscale structures of polymer chains adsorbed onto a solid surface play a crucial role in the thermal stability of the film. In this study, polystyrene (PS) spin-cast films (20 nm in thickness) with eight different molecular weights prepared on silicon (Si) substrates were used as a model. When low molecular weight (Mw≤ 50 kDa) PS films were subjected to thermal annealing at temperatures far above the bulk glass transition temperature, dewetting occurred promptly, while high molecular weight (Mw≥ 123 kDa) PS films were stable for at least 6 weeks at 150 °C. We reveal a strong correlation between the film stability and the two different interfacial structures of the adsorbed polymer chains: their opposing wettability against chemically identical free polymer chains results in a wetting-dewetting transition at the adsorbed polymer-free polymer interface. This is a unique aspect of the stability of polymer thin films and may be generalizable to other polymer systems regardless of the magnitude of solid-polymer attractive interactions.

SELECTION OF CITATIONS
SEARCH DETAIL
...