Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Ecol Evol ; 12(11): e9506, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36407898

ABSTRACT

The Northwest Pacific marginal waters comprising the South China Sea, East China Sea, Yellow Sea, and the Sea of Japan have unique geomorphic features. The Japanese flounder Paralichthys olivaceus, which is endemic to the Northwest Pacific, has high nutritional, economic, and ecological value. To allow the examination of the demographic history and population structure of the most common P. olivaceus species range over the five marginal seas (East China Sea, Yellow Sea, Bohai Sea, Northwest Pacific Ocean, and the Sea of Japan), the mitochondrial DNA control region of 91 individuals from six populations in China was sequenced. These sequences were combined with 233 sequences from four populations distributed in the Northwestern Pacific Ocean for analysis. Higher levels of nucleotide diversity (0.032 ± 0.016) and haplotype diversity (0.996 ± 0.001) were observed. The peripheral Fuqing population in the East China Sea had the relatively lowest genetic diversity and highest differentiation. Furthermore, when the results of the isolation by distance test, spatial analysis of molecular variation and geographic barrier analysis are also considered, there is a clear need to prioritize resource conservation and enhancement measures in this area. The phylogenetic trees, structure assignment test, and haplotypes network revealed no significant differences in the genealogical structure among ten populations. Mismatch distribution analysis, Bayesian skyline plots, and neutrality tests suggested that P. olivaceus experienced population expansion during the Pleistocene. Ocean currents and climate change play important roles in shaping the geographical distribution and genetic population structure of P. olivaceus.

2.
Zookeys ; 1083: 89-107, 2022.
Article in English | MEDLINE | ID: mdl-35115873

ABSTRACT

Corydoras is a speciose catfish genus from South America with widely investigated phylogenetic and evolutionary relationships. The complete mitogenomes of C.aeneus and C.paleatus were sequenced, assembled, and annotated using next-generation sequencing. The genome arrangements, gene contents, genome structures, base compositions, evolutionary features, codon usage, and tRNA structures of the two mitogenomes were compared and analyzed with nine published mitogenomes of Corydoras. Phylogenetic analysis was performed using concatenated nucleotide sequences with 13 protein-coding genes and two rRNAs with 44 mitogenomes of Siluriformes. These results provide information on the mitogenomes of eleven Corydoras species and evolutionary relationships within the suborder Loricarioidei, which may be applicable for further phylogenetic and taxonomic studies on Siluriformes and Loricarioidei.

3.
Mol Biol Rep ; 49(3): 1741-1748, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35023005

ABSTRACT

BACKGROUND: The taxonomic status of Knodu in the family Characidae is not yet clear. This study aimed to address this by sequencing and annotating Knodu borki Zarske, 2008. MATERIALS AND RESULTS: K. borki Zarske, 2008 was sequenced using a Hiseq platform and the complete mitogenome was assembled in SPAdes v3.15.2 and SOAPdenovo2 v.2.01. The mitogenome of K. borki from Guangzhou, the first sequenced species of the genus Knodu, is 16,837 bp in length and contains 13 protein-coding genes (PCGs), two ribosomal (r) RNAs, 22 transfer (t) RNAs, and one D-loop. Among these 37 genes, 28 are encoded by the heavy strand, while nine are encoded by the light strand. Twenty-one of the tRNAs can form typical cloverleaf secondary structures, except tRNA-Ser1, which lacks dihydrouridine arms. All PCGs have the same start codon (ATG), with the exception of COI (GTG). Four PCGs (ND1, ATP8, ND4L, and ND5) have TAA as the stop codon, ND6 has TAG as the stop codon, COI has AGG as the stop codon, and the remaining seven genes have incomplete stop codons of TA-/T-(ND2, COII, COIII, ND3, ND4, and Cyt b as T-, ATP6 as TA-). Phylogenetic analysis showed that K. borki belongs to the family Characidae. CONCLUSIONS: Our findings demonstrate that K. borki belongs to the family Characidae, due to consistency with the morphological identification. This study provides molecular information for further research on the phylogeny of the genus Knodus and for analyses of the taxonomic status of Characidae.


Subject(s)
Characidae , Cypriniformes , Genome, Mitochondrial , Animals , Base Composition , Characidae/genetics , Cypriniformes/genetics , Genome, Mitochondrial/genetics , Genomics , Phylogeny , RNA, Ribosomal/genetics , RNA, Transfer/genetics , Sequence Analysis, DNA
4.
Zookeys ; 1135: 157-170, 2022.
Article in English | MEDLINE | ID: mdl-36761794

ABSTRACT

The genus Scomberomorus is economically important; however, the taxonomic status and phylogenetic relationships in this genus are not clearly resolved, making it difficult to effectively protect and exploit fish resources. To clarify the taxonomic status of Scomberomorus species, mitochondrial cytochrome c oxidase I (COI) gene sequences of 150 samples were analyzed. The average genetic distance among 14 species was approximately 11 times greater than the distances within species, in accordance with the '10× rule' of species identification. Five of the 14 species did not form monophyletic clades based on a Bayesian inference gene tree. The application of four DNA-based species delimitation methods (automatic barcode gap discovery, barcode index numbers, Poisson tree process, and the K/θ method) yielded several key results. (1) Cryptic species were detected within Scomberomoruscommerson. (2) A Scomberomorusqueenslandicus sample from Australia was misidentified as S.commerson in the Barcode of Life Data System (BOLD). (3) Specimens originally identified as Scomberomorusguttatus was differentiated into four OTUs or species, two in the Yellow, South China, and Java seas, and two in geographically distant areas, one each in the Arabian Sea and the Bay of Bengal. (4) Six specimens from South Africa originally identified as S.plurilineatus most likely do not belong to the species. (5) Specimens identified as S.maculatus and S.regalis were conspecific; however, introgression cannot be ruled out. Our findings revealed cryptic diversity and difficulties in morphological identification of species in the genus Scomberomorus. This study provides scientifically based support for the conservation of germplasm resources of the genus Scomberomorus.

SELECTION OF CITATIONS
SEARCH DETAIL
...