Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 119
Filter
1.
Surg Endosc ; 2024 May 28.
Article in English | MEDLINE | ID: mdl-38806956

ABSTRACT

BACKGROUND: Laparoscopic left hemihepatectomy (LLH) has been shown to be an effective and safe method for treating hepatolithiasis primarily affecting the left hemiliver. However, this procedure still presents challenges. Due to pathological changes in intrahepatic duct stones, safely dissecting the hilar vessels and determining precise resection boundaries remains difficult, even with fluorescent imaging. Our team proposed a new method of augmented reality navigation (ARN) combined with Indocyanine green (ICG) fluorescence imaging for LLH in hepatolithiasis cases. This study aimed to investigate the feasibility of this combined approach in the procedure. METHODS: Between May 2021 and September 2023, 16 patients with hepatolithiasis who underwent LLH were included. All patients underwent preoperative 3D evaluation and were then guided using ARN and ICG fluorescence imaging during the procedure. Perioperative and short-term postoperative outcomes were assessed to evaluate the safety and efficacy of the method. RESULTS: All 16 patients successfully underwent LLH. The mean operation time was 380.31 ± 92.17 min, with a mean estimated blood loss of 116.25 ± 64.49 ml. ARN successfully aided in guiding hilar vessel dissection in all patients. ICG fluorescence imaging successfully identified liver resection boundaries in 11 patients (68.8%). In the remaining 5 patients (31.3%) where fluorescence imaging failed, virtual liver segment projection (VLSP) successfully identified their resection boundaries. No major complications occurred in any patients. Immediate stone residual rate, stone recurrence rate, and stone extraction rate through the T-tube sinus tract were 12.5%, 6.3%, and 6.3%, respectively. CONCLUSION: The combination of ARN and ICG fluorescence imaging enhances the safety and precision of LLH for hepatolithiasis. Moreover, ARN may serve as a safe and effective tool for identifying precise resection boundaries in cases where ICG fluorescence imaging fails.

2.
Surg Endosc ; 2024 May 28.
Article in English | MEDLINE | ID: mdl-38806957

ABSTRACT

BACKGROUND: Precision surgery for liver tumors favors laparoscopic anatomical liver resection (LALR), involving the removal of specific liver segments or subsegments. Indocyanine green (ICG)-negative staining is a commonly used method for defining resection boundaries but may be prone to failure. The challenge arises when ICG staining fails, as it cannot be repeated during surgery. In this study, we employed the virtual liver segment projection (VLSP) technology as a salvage approach for precise boundary determination. Our aim was to assess the feasibility of the VLSP to be used for the determination of the boundaries of the liver resection in this situation. METHODS: Between January 2021 and June 2023, 12 consecutive patients undergoing subsegment-oriented LALR were included in this pilot series. The VLSP technology was utilized to define the resection boundaries at the time of ICG-negative staining failure. Routine surgical parameters and short-term outcomes were evaluated to assess the safety of VLSP in this procedure. In addition, its feasibility was assessed by analyzing the accuracy between the predicted resected liver volume (PRLV) and actual resected liver volume (ARLV). RESULTS: Of the 12 enrolled patients, the mean operation time was 444.58 ± 101.70 min (range 290-570 min), with a mean blood loss of 125.00 ± 96.53 ml (range 50-400 mL). One patient (8.3%) was converted to laparotomy for subsequent parenchymal transection, four (33.3%) received blood transfusions and four (33.3%) had postoperative complications. All patients received an R0 resection. The Pearson correlation coefficient (r) between PRLV and ARLV was 0.98 (R2 = 0.96, p < 0.05), and the relative error (RE) was 8.62 ± 6.66% in the 12 patients, indicating agreement. CONCLUSION: Failure of intraoperative ICG-negative staining during subsegment-oriented LALR is possible, and VLSP may be an alternative to define the resection boundaries in such cases.

3.
Int J Mol Sci ; 25(10)2024 May 11.
Article in English | MEDLINE | ID: mdl-38791286

ABSTRACT

In clinical practice, tissue adhesives have emerged as an alternative tool for wound treatments due to their advantages in ease of use, rapid application, less pain, and minimal tissue damage. Since most tissue adhesives are designed for internal use or wound treatments, the biodegradation of adhesives is important. To endow tissue adhesives with biodegradability, in the past few decades, various biodegradable polymers, either natural polymers (such as chitosan, hyaluronic acid, gelatin, chondroitin sulfate, starch, sodium alginate, glucans, pectin, functional proteins, and peptides) or synthetic polymers (such as poly(lactic acid), polyurethanes, polycaprolactone, and poly(lactic-co-glycolic acid)), have been utilized to develop novel biodegradable tissue adhesives. Incorporated biodegradable polymers are degraded in vivo with time under specific conditions, leading to the destruction of the structure and the further degradation of tissue adhesives. In this review, we first summarize the strategies of utilizing biodegradable polymers to develop tissue adhesives. Furthermore, we provide a symmetric overview of the biodegradable polymers used for tissue adhesives, with a specific focus on the degradability and applications of these tissue adhesives. Additionally, the challenges and perspectives of biodegradable polymer-based tissue adhesives are discussed. We expect that this review can provide new inspirations for the design of novel biodegradable tissue adhesives for biomedical applications.


Subject(s)
Biocompatible Materials , Tissue Adhesives , Tissue Adhesives/chemistry , Humans , Animals , Biocompatible Materials/chemistry , Polymers/chemistry , Biodegradable Plastics/chemistry , Chitosan/chemistry
4.
ACS Sens ; 9(4): 2122-2133, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38602840

ABSTRACT

Terahertz (THz) spectroscopy has impressive capability for label-free biosensing, but its utility in clinical laboratories is rarely reported due to often unsatisfactory detection performances. Here, we fabricated metal-graphene hybrid THz metasurfaces (MSs) for the sensitive and enzyme-free detection of circulating tumor DNA (ctDNA) in pancreatic cancer plasma samples. The feasibility and mechanism of the enhanced effects of a graphene bridge across the MS and amplified by gold nanoparticles (AuNPs) were investigated experimentally and theoretically. The AuNPs serve to boost charge injection in the graphene film and result in producing a remarkable change in the graded transmissivity index to THz radiation of the MS resonators. Assay design utilizes this feature and a cascade hybridization chain reaction initiated on magnetic beads in the presence of target ctDNA to achieve dual signal amplification (chemical and optical). In addition to demonstrating subfemtomolar detection sensitivity and single-nucleotide mismatch selectivity, the proposed method showed remarkable capability to discriminate between pancreatic cancer patients and healthy individuals by recognizing and quantifying targeted ctDNAs. The introduction of graphene to the metasurface produces an improved sensitivity of 2 orders of magnitude for ctDNA detection. This is the first study to report the combined application of graphene and AuNPs in biosensing by THz spectroscopic resonators and provides a combined identification scheme to detect and discriminate different biological analytes, including nucleic acids, proteins, and various biomarkers.


Subject(s)
Circulating Tumor DNA , Gold , Graphite , Metal Nanoparticles , Pancreatic Neoplasms , Graphite/chemistry , Humans , Gold/chemistry , Metal Nanoparticles/chemistry , Circulating Tumor DNA/blood , Circulating Tumor DNA/genetics , Circulating Tumor DNA/analysis , Pancreatic Neoplasms/blood , Pancreatic Neoplasms/diagnosis , Biosensing Techniques/methods , Terahertz Spectroscopy/methods , Nucleic Acid Hybridization , Limit of Detection
5.
Org Lett ; 26(16): 3435-3440, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38629704

ABSTRACT

We have developed a widely applicable (radio)fluoro-iodination of alkenes using readily available and easily handled KF (18F). The reactions exhibited high functional group tolerance and needed only an ambient atmosphere. Furthermore, the resulting product could be further functionalized with various nucleophiles.

6.
Ren Fail ; 46(1): 2338929, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38632963

ABSTRACT

OBJECTIVE: To delineate the efficacy and safety profile of hemodiafiltration with endogenous reinfusion (HFR) for uremic toxin removal in patients undergoing maintenance hemodialysis (MHD). METHODS: Patients who have been on MHD for a period of at least 3 months were enrolled. Each subject underwent one HFR and one hemodiafiltration (HDF) treatment. Blood samples were collected before and after a single HFR or HDF treatment to test uremic toxin levels and to calculate clearance rate. The primary efficacy endpoint was to compare uremic toxin levels of indoxyl sulfate (IS), λ-free light chains (λFLC), and ß2-microglobulin (ß2-MG) before and after HFR treatment. Secondary efficacy endpoints was to compare the levels of urea, interleukin-6 (IL-6), P-cresol, chitinase-3-like protein 1 (YKL-40), leptin (LEP), hippuric acid (HPA), trimethylamine N-oxide (TMAO), asymmetric dimethylarginine (ADMA), tumor necrosis factor-α (TNF-α), fibroblast growth factor 23 (FGF23) before and after HFR treatment. The study also undertook a comparative analysis of uremic toxin clearance between a single HFR and HDF treatment. Meanwhile, the lever of serum albumin and branched-chain amino acids before and after a single HFR or HDF treatment were compared. In terms of safety, the study was meticulous in recording vital signs and the incidence of adverse events throughout its duration. RESULTS: The study enrolled 20 patients. After a single HFR treatment, levels of IS, λFLC, ß2-MG, IL-6, P-cresol, YKL-40, LEP, HPA, TMAO, ADMA, TNF-α, and FGF23 significantly decreased (p < 0.001 for all). The clearance rates of λFLC, ß2-MG, IL-6, LEP, and TNF-α were significantly higher in HFR compared to HDF (p values: 0.036, 0.042, 0.041, 0.019, and 0.036, respectively). Compared with pre-HFR and post-HFR treatment, levels of serum albumin, valine, and isoleucine showed no significant difference (p > 0.05), while post-HDF, levels of serum albumin significantly decreased (p = 0.000). CONCLUSION: HFR treatment effectively eliminates uremic toxins from the bloodstream of patients undergoing MHD, especially protein-bound toxins and large middle-molecule toxins. Additionally, it retains essential physiological compounds like albumin and branched-chain amino acids, underscoring its commendable safety profile.


Subject(s)
Cresols , Hemodiafiltration , Methylamines , Humans , Hemodiafiltration/adverse effects , Pilot Projects , Uremic Toxins , Chitinase-3-Like Protein 1 , Interleukin-6 , Tumor Necrosis Factor-alpha , Renal Dialysis , Amino Acids, Branched-Chain , Serum Albumin
7.
World J Surg ; 48(5): 1242-1251, 2024 May.
Article in English | MEDLINE | ID: mdl-38530128

ABSTRACT

BACKGROUND: Hepatolithiasis is a complex condition that poses challenges and difficulties in surgical treatment. Three-dimensional visualization technology combined with fluorescence imaging (3DVT-FI) enables accurate preoperative assessment and real-time intraoperative navigation. However, the perioperative outcomes of 3DVT-FI in hepatolithiasis have not been reported. We aim to evaluate the efficacy of 3DVT-FI in the treatment of hepatolithiasis. METHODS: A retrospective analysis was performed on 128 patients who underwent hepatectomy for hepatolithiasis at the Department of Hepatobiliary Surgery, Zhujiang Hospital, between January 2017 and December 2022. Among them, 50 patients underwent hepatectomy using 3DVT-FI (3DVT-FI group), while 78 patients underwent conventional hepatectomy without 3DVT-FI (CH group). The operative data, postoperative liver function indices, complication rates and stone residue were compared between the two groups. RESULTS: There were no significant differences in preoperative baseline data between the two groups (p > 0.05). Compared with the CH group, the 3DVT-FI group exhibited lower intraoperative blood loss (140.00 ± 112.12 vs. 225.99 ± 186.50 mL, p = 0.001), and a lower intraoperative transfusion rate (8.0% vs. 23.1%, p = 0.027). The overall incidence of postoperative complications did not differ significantly (22.0% vs. 35.9%, p = 0.096). The 3DVT-FI group was associated with a lower immediate residual stone rate (16.0% vs. 34.6%, p = 0.021). There were no perioperative deaths in the 3DVT-FI group, while one perioperative death occurred in the CH group. CONCLUSIONS: The 3DVT-FI may offer significant benefits in terms of surgical safety, reduced intraoperative bleeding and decreased stone residue during hepatectomy for hepatolithiasis.


Subject(s)
Hepatectomy , Imaging, Three-Dimensional , Indocyanine Green , Liver Diseases , Optical Imaging , Humans , Hepatectomy/methods , Retrospective Studies , Female , Male , Middle Aged , Optical Imaging/methods , Liver Diseases/surgery , Liver Diseases/diagnostic imaging , Adult , Treatment Outcome , Aged , Surgery, Computer-Assisted/methods
9.
Int J Surg ; 110(3): 1663-1676, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38241321

ABSTRACT

BACKGROUND: Three-dimensional reconstruction visualization technology (3D-RVT) is an important tool in the preoperative assessment of patients undergoing liver resection. However, it is not clear whether this technique can improve short-term and long-term outcomes in patients with hepatocellular carcinoma (HCC) compared with two-dimensional (2D) imaging. METHOD: A total of 3402 patients from five centers were consecutively enrolled from January 2016 to December 2020, and grouped based on the use of 3D-RVT or 2D imaging for preoperative assessment. Baseline characteristics were balanced using propensity score matching (PSM, 1:1) and stabilized inverse probability of treatment-weighting (IPTW) to reduce potential selection bias. The perioperative outcomes, long-term overall survival (OS), and recurrence-free survival (RFS) were compared between the two groups. Cox-regression analysis was used to identify the risk factors associated with RFS. RESULTS: A total of 1681 patients underwent 3D-RVT assessment before hepatectomy (3D group), while 1721 patients used 2D assessment (2D group). The PSM cohort included 892 patient pairs. In the IPTW cohort, there were 1608.3 patients in the 3D group and 1777.9 patients in the 2D group. In both cohorts, the 3D group had shorter operation times, lower morbidity and liver failure rates, as well as shorter postoperative hospital stays. The 3D group had more margins ≥10 mm and better RFS than the 2D group. The presence of tumors with a diameter ≥5 cm, intraoperative blood transfusion and multiple tumors were identified as independent risk factors for RFS, while 3D assessment and anatomical resection were independent protective factors. CONCLUSION: In this multicenter study, perioperative outcomes and RFS of HCC patients following 3D-RVT assessment were significantly different from those following 2D imaging assessment. Thus, 3D-RVT may be a feasible alternative assessment method before hepatectomy for these patients.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/diagnostic imaging , Carcinoma, Hepatocellular/surgery , Liver Neoplasms/diagnostic imaging , Liver Neoplasms/surgery , Propensity Score , Hepatectomy/methods , Imaging, Three-Dimensional , Retrospective Studies
10.
J Am Coll Surg ; 238(3): 321-330, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-37991244

ABSTRACT

BACKGROUND: The internal anatomy of the liver is extremely complex. Laparoscopic anatomical segmentectomy requires reference to the position and alignment of intrahepatic vascular. However, the surface of the liver lacks anatomical landmarks and the liver segment boundaries cannot be identified with the naked eye. Augmented reality navigation (ARN) and indocyanine green fluorescence imaging (FI) are emerging navigation tools in liver resection. This study aimed to explore the efficacy and application value of laparoscopic anatomical segmentectomy guided by ARN combined with indocyanine green FI. STUDY DESIGN: Ninety-eight patients who were diagnosed with hepatocellular carcinoma and underwent laparoscopic anatomical segmentectomy from January 2018 to January 2022 were retrospectively analyzed. They were divided into the ARN-FI group (45 patients) and the non-ARN-FI group (53 patients) based on whether ARN combined with FI was applied during the operation. The differences in intraoperative and postoperative outcomes were compared. RESULTS: There was no significant difference in preoperative baseline data and postoperative complication rates between the 2 groups. Compared with the non-ARN-FI group, the ARN-FI group had much lower intraoperative blood loss (100 vs 200 mL, p = 0.005) and a lower incidence of remnant liver ischemia (13.3% vs 30.2%, p = 0.046). The 1- and 3-year disease-free survival rates in the ARN-FI and non-ARN-FI groups were 91.01% vs 71.15% and 70.01% vs 52.46%, respectively; the differences between the 2 groups were statistically significant (p = 0.047). CONCLUSIONS: The ARN-FI technology provides a more standardized approach for liver parenchyma section during laparoscopic liver resection, effectively minimizing intraoperative blood loss, reducing postoperative remnant liver ischemia, and improving oncological prognosis. This method is safe and feasible and has good clinical application prospects.


Subject(s)
Augmented Reality , Carcinoma, Hepatocellular , Laparoscopy , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/diagnostic imaging , Carcinoma, Hepatocellular/surgery , Carcinoma, Hepatocellular/complications , Indocyanine Green , Liver Neoplasms/diagnostic imaging , Liver Neoplasms/surgery , Retrospective Studies , Blood Loss, Surgical , Hepatectomy/methods , Laparoscopy/methods , Optical Imaging/methods , Ischemia/complications , Ischemia/surgery
11.
Nanomicro Lett ; 16(1): 42, 2023 Dec 04.
Article in English | MEDLINE | ID: mdl-38047957

ABSTRACT

Metal-organic gel (MOG) derived composites are promising multi-functional materials due to their alterable composition, identifiable chemical homogeneity, tunable shape, and porous structure. Herein, stable metal-organic hydrogels are prepared by regulating the complexation effect, solution polarity and curing speed. Meanwhile, collagen peptide is used to facilitate the fabrication of a porous aerogel with excellent physical properties as well as the homogeneous dispersion of magnetic particles during calcination. Subsequently, two kinds of heterometallic magnetic coupling systems are obtained through the application of Kirkendall effect. FeCo/nitrogen-doped carbon (NC) aerogel demonstrates an ultra-strong microwave absorption of - 85 dB at an ultra-low loading of 5%. After reducing the time taken by atom shifting, a FeCo/Fe3O4/NC aerogel containing virus-shaped particles is obtained, which achieves an ultra-broad absorption of 7.44 GHz at an ultra-thin thickness of 1.59 mm due to the coupling effect offered by dual-soft-magnetic particles. Furthermore, both aerogels show excellent thermal insulation property, and their outstanding radar stealth performances in J-20 aircraft are confirmed by computer simulation technology. The formation mechanism of MOG is also discussed along with the thermal insulation and electromagnetic wave absorption mechanism of the aerogels, which will enable the development and application of novel and lightweight stealth coatings.

12.
Org Lett ; 25(45): 8127-8132, 2023 Nov 17.
Article in English | MEDLINE | ID: mdl-37922337

ABSTRACT

We report herein a highly efficient copper-catalyzed protocol for the transformation of haloalkynes to the corresponding difluoromethylated alkynes. This scalable protocol exhibits a broad substrate scope and excellent functional group tolerance, enabling the late-stage difluoromethylation of bioactive molecules. Additionally, the strategy of utilizing the difluoromethylalkynes in gram-scale reactions and multiple transformations has proven to be highly valuable in synthetic chemistry.

13.
ACS Catal ; 13(4): 2761-2770, 2023 Feb 17.
Article in English | MEDLINE | ID: mdl-37800120

ABSTRACT

Despite the success of Sonogashira coupling for the synthesis of arylalkynes and conjugated enynes, the engagement of unactivated alkyl halides in such reactions remains historically challenging. We report herein a strategy that merges Cu-catalyzed alkyne transfer with the aryl radical activation of carbon-halide bonds to enable a general approach for the coupling of alkyl iodides with terminal alkynes. This unprecedented Sonogashira-type cross-coupling reaction tolerates a broad range of functional groups and has been applied to the late-stage cross-coupling of densely functionalized pharmaceutical agents as well as the synthesis of positron emission tomography tracers.

14.
Acta Biochim Pol ; 70(3): 567-574, 2023 Sep 18.
Article in English | MEDLINE | ID: mdl-37721476

ABSTRACT

OBJECTIVE: A recent high-throughput sequencing showed that circular RNA Rho-associated kinase 1 (circROCK1) is abnormally highly expressed in sepsis, but whether it is involved in sepsis development remains unclear. The objective of this study was to investigate the biological function of circROCK1 in sepsis-induced myocardial injury and reveal its potential downstream molecular mechanism. METHODS: Real-time reverse transcriptase-polymerase chain reaction was applied to detect circROCK1 and miR-96-5p expressions in the serum of septic patients. Spearman correlation analysis examined the correlation between circROCK1 and the clinicopathological characteristics of septic patients. The Cecal puncture and ligation (CLP) method was used to establish an in vivo sepsis model. circROCK1 and miR-96-5p expressions in mice were modified by injection of lentivirus or oligonucleotide. The left ventricular systolic pressure, left ventricular end-diastolic pressure, and the maximum increase/decrease rate of left ventricular pressure were checked. ELISA was applied to detect inflammatory factors levels as well as myocardial injury markers levels. Hematoxylin and eosin staining was performed to observe pathological changes in myocardial tissues, and Western blot examined phosphorylated nuclear factor (NF)-κB and oxidative stress-responsive 1 (OXSR1) expression. Dual luciferase reporter experiment was conducted to confirm the targeting relationship between circROCK1, OXSR1, and miR-96-5p. RESULTS: circROCK1 and OXSR1 were highly expressed in sepsis and miR-96-5p was under-expressed. circROCK1 was positively correlated with serum creatinine, C-reactive protein, procalcitonin, and sequential organ failure assessment scores in septic patients. Silencing circROCK1 could improve the diastolic and systolic function of CLP mice, as well as myocardial damage, reduce myocardial tissue edema and necrosis, and inhibit inflammatory factor level and phosphorylated NF-κB expression. Down-regulating miR-96-5p promoted myocardial injury in CLP mice. Silencing circROCK1 and miR-96-5p inhibited and promoted OXSR1 expression, respectively. Both circROCK1 and OXSR1 had a targeting relationship with miR-96-5p. CONCLUSION: CircROCK1 promotes myocardial injury in septic mice by regulating the miR-96-5p/OXSR1 axis, and it can be used as a potential target for treating septic myocardial dysfunction.


Subject(s)
MicroRNAs , Myocardium , Animals , Mice , Blotting, Western , C-Reactive Protein , Cecum , MicroRNAs/genetics
15.
Sleep Med Rev ; 72: 101842, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37660580

ABSTRACT

Insomnia is a common complaint for adults with multiple sclerosis and can severely impact health-related quality of life. Point prevalence estimates of insomnia are, however, difficult to determine in this population due to the use of different measurement tools as well as the highly variable clinical presentation of multiple sclerosis. This review consolidates the current evidence base to provide a global estimate of insomnia disorders and symptoms in multiple sclerosis, with consideration of both measurement and sample issues. A comprehensive review of the PUBMED, EMBASE, PsycINFO and CINAHL databases from database inception until January 31st, 2023 identified 1649 records, of which 34 (7636 participants total) were eligible for inclusion. Findings were meta-analysed using a random-effects model. Estimates based on self-reported symptoms (52%, CI: 44%-59%) were significantly higher than those obtained by diagnostic tools (22%, CI: 16%-29%). Gender was identified as a potential moderator, with women more likely to report insomnia than men. One in two adults with multiple sclerosis endorse symptoms of poor sleep quality and daytime sleepiness, with 1 in 5 diagnosed with an insomnia disorder. Future research is needed to enhance understanding of these comorbid conditions, including the trajectory of insomnia with disease progression. PROSPERO registration number CRD42021281524.


Subject(s)
Disorders of Excessive Somnolence , Multiple Sclerosis , Sleep Initiation and Maintenance Disorders , Male , Adult , Humans , Female , Sleep Initiation and Maintenance Disorders/epidemiology , Sleep Initiation and Maintenance Disorders/etiology , Prevalence , Multiple Sclerosis/complications , Multiple Sclerosis/epidemiology , Quality of Life , Disorders of Excessive Somnolence/diagnosis
16.
PLoS One ; 18(8): e0289963, 2023.
Article in English | MEDLINE | ID: mdl-37566602

ABSTRACT

Monitoring palm tree seedlings and plantlings presents a formidable challenge because of the microscopic size of these organisms and the absence of distinguishing morphological characteristics. There is a demand for technical approaches that can provide restoration specialists with palm tree seedling monitoring systems that are high-resolution, quick, and environmentally friendly. It is possible that counting plantlings and identifying them down to the genus level will be an extremely time-consuming and challenging task. It has been demonstrated that convolutional neural networks, or CNNs, are effective in many aspects of image recognition; however, the performance of CNNs differs depending on the application. The performance of the existing CNN-based models for monitoring and predicting plantlings growth could be further improved. To achieve this, a novel Gap Layer modified CNN architecture (GL-CNN) has been proposed with an IoT effective monitoring system and UAV technology. The UAV is employed for capturing plantlings images and the IoT model is utilized for obtaining the ground truth information of the plantlings health. The proposed model is trained to predict the successful and poor seedling growth for a given set of palm tree plantling images. The proposed GL-CNN architecture is novel in terms of defined convolution layers and the gap layer designed for output classification. There are two 64×3 conv layers, two 128×3 conv layers, two 256×3 conv layers and one 512×3 conv layer for processing of input image. The output obtained from the gap layer is modulated using the ReLU classifier for determining the seedling classification. To evaluate the proposed system, a new dataset of palm tree plantlings was collected in real time using UAV technology. This dataset consists of images of palm tree plantlings. The evaluation results showed that the proposed GL-CNN model performed better than the existing CNN architectures with an average accuracy of 95.96%.

17.
Ann Surg Oncol ; 30(12): 7373-7383, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37606841

ABSTRACT

BACKGROUND: Laparoscopic anatomical Segment 8 (S8) resection is a highly challenging hepatectomy. Augmented reality navigation (ARN), which could be combined with indocyanine green (ICG) fluorescence imaging, has been applied in various complex liver resections and may also be applied in laparoscopic anatomical S8 resection. However, no study has explored how to apply ARN plus ICG fluorescence imaging (ARN-FI) in laparoscopic anatomical S8 resection, or explored its accuracy. PATIENTS AND METHODS: This study is a post hoc analysis that included 31 patients undergoing laparoscopic anatomical S8 resection from the clinical NaLLRFI trial, and the resected liver volume was measured in each patient. The perioperative parameters of safety and feasibility, as well as the accuracy analysis outcomes were compared. RESULTS: There were 16 patients in the ARN-FI group and 15 patients underwent conventional laparoscopic hepatectomy without ARN or fluorescence imaging (non-ARN-FI group). There was no significant difference in baseline characteristics between the two groups. Compared with the non-ARN-FI group, the ARN-FI group had lower intraoperative bleeding (median 125 vs. 300 mL, P = 0.003). No significant difference was observed in other postoperative short-term outcomes. Accuracy analysis indicated that the actual resected liver volume (ARLV) in the ARN-FI group was more accurate. CONCLUSIONS: ARN-FI was associated with less intraoperative bleeding and more accurate resection volume. These techniques may address existing challenges and provide rational guidance for laparoscopic anatomical S8 resection.

18.
Small ; 19(41): e2303393, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37291740

ABSTRACT

Transition metal carbide (Ti3 C2 Tx MXene), with a large specific surface area and abundant surface functional groups, is a promising candidate in the family of electromagnetic wave (EMW) absorption. However, the high conductivity of MXene limits its EMW absorption ability, so it remains a challenge to obtain outstanding EMW attenuation ability in pure MXene. Herein, by integrating HF etching, KOH shearing, and high-temperature molten salt strategies, layered MXene (L-MXene), network-like MXene nanoribbons (N-MXene NRs), porous MXene monolayer (P-MXene ML), and porous MXene layer (P-MXene L) are rationally constructed with favorable microstructures and surface states for EMW absorption. HF, KOH, and KCl/LiCl are used to functionalize MXene to tune its microstructure and surface state (F- , OH- , and Cl- terminals), thereby improving the EMW absorption capacity of MXene-based nanostructures. Impressively, with the unique structure, proper electrical conductivity, large specific surface area, and abundant porous defects, MXene-based nanostructures achieve good impedance matching, dipole polarization, and conduction loss, thus inheriting excellent EMW absorption performance. Consequently, L-MXene, N-MXene NRs, P-MXene ML, and P-MXene L enable a reflection loss (RL ) value of -43.14, -63.01, -60.45, and -56.50 dB with a matching thickness of 0.95, 1.51, 3.83, and 4.65 mm, respectively.

19.
Org Lett ; 25(25): 4632-4637, 2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37314942

ABSTRACT

Herein, by exploiting different activation modes of fluoroamides, we achieved α- and δ-C(sp3)-H alkylation of nitroalkanes with switchable regioselectivity. Cu catalysis enabled the interception of a distal C-centered radical by a N-centered radical to couple nitroalkanes and unactivated δ-C-H bonds. In addition, imines generated in situ by fluoroamides were trapped by nitroalkanes to realize the α-C-H alkylation of amides. Both of those scalable protocols have broad substrate scopes and good functional group tolerance.


Subject(s)
Alkanes , Nitro Compounds , Alkanes/chemistry , Alkylation , Nitro Compounds/chemistry , Catalysis , Amides/chemistry
20.
J Colloid Interface Sci ; 648: 940-950, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37329605

ABSTRACT

Exploring electromagnetic wave (EMW) absorbers with ultrathin matching thickness (d ≤ 1.5 mm), strong reflection loss (RL ≤ -50 dB), and wide effective absorption bandwidth (EAB, RL ≤ -10 dB) is urgent and essential for reducing EMW radiation and interference. Herein, a 2D/2D CoAl/Co9S8/Ni3S4 heterostructure was constructured using simple hydrothermal and pyrolysis methods. 2D porous CoAl nanosheets and 2D Co9S8/Ni3S4 ultrathin nanosheets are assembled by small nanoparticle chains. Strikingly, the CoAl/Co9S8/Ni3S4 heterostructure exhibits remarkable EMW absorption performance with a RL value of -61.56 dB, a high EAB of 4 GHz, and an ultrathin matching thickness of 1.25 mm. Mechanism investigations reveal that the CoAl/Co9S8/Ni3S4 heterostructure delivers dual metal sulfides behavior, high specific surface area, strong interactions, rich defects (N doping), and abundant homogeneous and heterogeneous interfaces, which promote good impedance matching, dielectric loss (interface polarization, conductive loss, and dipole polarization), as well as magnetic loss (natural resonance, exchange resonance, and eddy current loss) characteristics. This work can provide insights into the mechanism of dual metal sulfides used as high-performance EMW absorbers and deepen our understanding of the design and application of 2D/2D heterostructures.

SELECTION OF CITATIONS
SEARCH DETAIL
...