Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Cancer ; 15(5): 1182-1190, 2024.
Article in English | MEDLINE | ID: mdl-38356714

ABSTRACT

Background: Oral Submucosal Fibrosis (OSF) and Oral Leukoplakia (OLK) are well-known oral potentially malignant disorders, and cases of Oral Submucosal Fibrosis concomitant Oral Leukoplakia (OSF+OLK) are now being reported clinically. DNA image cytometry is an objective and non-invasive method for monitoring the risk of precancerous lesions in the oral cavity. Methods: A total of 111 patients with clinically characterized oral mucosal lesions underwent simultaneous and independent histopathological and DNA imaging cytometry assessments. Clinical data were also collected for each patient. Results: The frequency of DNA content abnormality was higher in the tongue than in other oral sites (P = 0.003) for OLK. The frequency of DNA content abnormality was higher in the tongue than in other oral sites (P = 0.035) for OSF+OLK. The differences of DNA content abnormality in age, sex, dietary habit, smoking, and alcohol intake were not observed in OLK and OSF+OLK. The study indicates an association between DNA content abnormality and pathological examination in OSF+OLK ( χ2 test, P = 0.007). OLK showed higher sensitivity and specificity than OSF, while the sensitivity and specificity of OSF+OLK are higher than OLK only and OSF only. Conclusion: DNA image cytometry can be utilized as an adjunctive device for the initial detection of oral potentially malignant disorders that require further clinical management.

2.
Bioorg Chem ; 143: 107078, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38181661

ABSTRACT

EZH2 (enhancer of zeste homolog 2) is one of the most important histone methyltransferases (HMTs), and overexpression of EZH2 can lead to proliferation, migration and angiogenesis of tumor cells. But most of EZH2 inhibitors are only effective against some hematologic malignancies and have poor efficacy against solid tumors. Here, we report the design, synthesis, and evaluation of highly potent proteolysis targeting chimeric (PROTACs) small molecules targeting EZH2. We developed a potent and effective EZH2 degrader P4, which effectively induced EZH2 protein degradation and inhibited breast cancer cell growth. Further studies showed that P4 can significantly decrease the degree of H3K27me3 in MDA-MB-231 cell line, induce apoptosis and G0/G1 phase arrest in Pfeiffer and MDA-MB-231 cell lines. Therefore, P4 is a potential anticancer molecule for breast cancer treatment.


Subject(s)
Breast Neoplasms , Enhancer of Zeste Homolog 2 Protein , Proteolysis Targeting Chimera , Female , Humans , Breast Neoplasms/drug therapy , Cell Line, Tumor , Cell Proliferation , Enhancer of Zeste Homolog 2 Protein/drug effects , Enhancer of Zeste Homolog 2 Protein/metabolism , Enzyme Inhibitors/pharmacology , Von Hippel-Lindau Tumor Suppressor Protein/pharmacology , Proteolysis Targeting Chimera/chemistry , Proteolysis Targeting Chimera/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...