Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
J Chem Theory Comput ; 19(23): 8587-8597, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38044845

ABSTRACT

The variational quantum eigensolver is a promising way to solve the Schrödinger equation on a noisy intermediate-scale quantum (NISQ) computer, while its success relies on a well-designed wave function ansatz. Inspired by the quantum neural network, we propose a new hardware heuristic ansatz where its expressibility can be improved by increasing either the depth or the width of the circuit. Such a character makes this ansatz adaptable to different hardware environments. More importantly, it provides a general framework to improve the efficiency of the quantum resource utilization. For example, on a superconducting quantum computer where circuit depth is usually the bottleneck and the qubits thus cannot be fully used, circuit depth can be significantly reduced by introducing ancilla qubits. Ancilla qubits also make the circuit less sensitive to noises in practical application. These results open a new avenue to develop practical applications of quantum computation in the NISQ era.

2.
Biomed Pharmacother ; 166: 115421, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37660649

ABSTRACT

Hemostasis is a crucial process that quickly forms clots at injury sites to prevent bleeding and infections. Dysfunctions in this process can lead to hemorrhagic disorders, such as hemophilia and thrombocytopenia purpura. While hemostatic agents are used in clinical treatments, there is still limited knowledge about potentiators targeting coagulation factors. Recently, LCTx-F2, a procoagulant spider-derived peptide, was discovered. This study employed various methods, including chromogenic substrate analysis and dynamic simulation, to investigate how LCTx-F2 enhances the activity of thrombin and FXIIa. Our findings revealed that LCTx-F2 binds to thrombin and FXIIa in a similar manner, with the N-terminal penetrating the active-site cleft of the enzymes and the intermediate section reinforcing the peptide-enzyme connection. Interestingly, the C-terminal remained at a considerable distance from the enzymes, as evidenced by the retention of affinity for both enzymes using truncated peptide T-F2. Furthermore, results indicated differences in the bonding relationship of critical residues between thrombin and FXIIa, with His13 facilitating binding to thrombin and Arg7 being required for binding to FXIIa. Overall, our study sheds light on the molecular mechanism by which LCTx-F2 potentiates coagulation factors, providing valuable insights that may assist in designing drugs targeting procoagulation factors.


Subject(s)
Hemostatics , Spiders , Animals , Thrombin , Blood Coagulation Factors , Peptides/pharmacology
3.
J Phys Chem Lett ; 13(28): 6420-6426, 2022 Jul 21.
Article in English | MEDLINE | ID: mdl-35816117

ABSTRACT

The potential energy surface (PES) is crucial for interpreting a variety of chemical reaction processes. However, predicting accurate PESs with high-level electronic structure methods is a challenging task due to the high computational cost. As an appealing application of quantum computing, we show in this work that variational quantum algorithms can be integrated with machine learning (ML) techniques as a promising scheme for exploring accurate PESs. Different from using a ML model to represent the potential energy, we encode the molecular geometry information into a deep neural network (DNN) to represent parameters of the variational quantum eigensolver (VQE), leaving the PES to the wave function ansatz. Once the DNN model is trained, the variational optimization procedure that hinders the application of the VQE to complex systems is avoided, and thus the evaluation of PESs is significantly accelerated. Numerical results demonstrate that a simple DNN model is able to reproduce accurate PESs for small molecules.

4.
JACS Au ; 2(2): 443-452, 2022 Feb 28.
Article in English | MEDLINE | ID: mdl-35252993

ABSTRACT

Chemical reactions on metal surfaces are important in various processes such as heterogeneous catalysis and nanostructure growth. At moderate or lower temperatures, these reactions generally follow the minimum energy path, and temperature effects can be reasonably described by a harmonic oscillator model. At a high temperature approaching the melting point of the substrate, general behaviors of surface reactions remain elusive. In this study, by taking hydrocarbon species adsorbed on Cu(111) as a model system and performing extensive molecular dynamics simulations powered by machine learning potentials, we identify several important high-temperature effects, including local chemical environment, surface atom mobility, and substrate thermal expansion. They affect different aspects of a high-temperature surface reaction in different ways. These results deepen our understanding of high-temperature reactions.

5.
ACS Nano ; 16(1): 285-294, 2022 Jan 25.
Article in English | MEDLINE | ID: mdl-34965103

ABSTRACT

The epitaxial growth of single-crystal thin films relies on the availability of a single-crystal substrate and a strong interaction between epilayer and substrate. Previous studies have reported the roles of the substrate (e.g., symmetry and lattice constant) in determining the orientations of chemical vapor deposition (CVD)-grown graphene, and Cu(111) is considered as the most promising substrate for epitaxial growth of graphene single crystals. However, the roles of gas-phase reactants and graphene-substrate interaction in determining the graphene orientation are still unclear. Here, we find that trace amounts of oxygen is capable of enhancing the interaction between graphene edges and Cu(111) substrate and, therefore, eliminating the misoriented graphene domains in the nucleation stage. A modified anomalous grain growth method is developed to improve the size of the as-obtained Cu(111) single crystal, relying on strongly textured polycrystalline Cu foils. The batch-to-batch production of A3-size (∼0.42 × 0.3 m2) single-crystal graphene films is achieved on Cu(111) foils relying on a self-designed pilot-scale CVD system. The as-grown graphene exhibits ultrahigh carrier mobilities of 68 000 cm2 V-1 s-1 at room temperature and 210 000 cm2 V-1 s-1 at 2.2 K. The findings and strategies provided in our work would accelerate the mass production of high-quality misorientation-free graphene films.

6.
Front Pharmacol ; 10: 357, 2019.
Article in English | MEDLINE | ID: mdl-31040778

ABSTRACT

Kv4 potassium channels are responsible for transient outward K+ currents in the cardiac action potential (AP). Previous experiments by our group demonstrated that Jingzhaotoxin-V (JZTX-V) selectively inhibits A-type potassium channels. However, the specific effects of JZTX-V on the transient outward (Ito) current of cardiomyocytes and underlying mechanism of action remain unclear. In the current study, 100 nM JZTX-V effectively inhibited the Ito current and extended the action potential duration (APD) of neonatal rat ventricular myocytes (NRVM). We further analyzed the effects of JZTX-V on Kv4.2, a cloned channel believed to underlie the Ito current in rat cardiomyocytes. JZTX-V inhibited the Kv4.2 current with a half-maximal inhibitory concentration (IC50) of 13 ± 1.7 nM. To establish the molecular mechanism underlying the inhibitory action of JZTX-V on Kv4.2, we performed alanine scanning mutagenesis of Kv4.2 and JZTX-V and assessed the effects of the mutations on binding activities of the proteins. Interestingly, the Kv4.2 mutations V285A, F289A, and V290A reduced the affinity for JZTX-V while I275A and L277A increased the affinity for JZTX-V. Moreover, mutation of positively charged residues (R20 and K22) of JZTX-V and the hydrophobic patch (formed by W5, M6, and W7) led to a significant reduction in toxin sensitivity, indicating that the hydrophobic patch and electrostatic interactions played key roles in the binding of JZTX-V with Kv4.2. Data from our study have shed light on the specific roles and molecular mechanisms of JZTX-V in the regulation of Ito potassium channels and supported its utility as a potential novel antiarrhythmic drug.

7.
Channels (Austin) ; 12(1): 109-118, 2018 01 01.
Article in English | MEDLINE | ID: mdl-29532737

ABSTRACT

Spider venoms are known to contain various toxins that are used as an effective means to capture their prey or to defend themselves against predators. An investigation of the properties of Ornithoctonus huwena (O.huwena) crude venom found that the venom can block neuromuscular transmission of isolated mouse phrenic nerve-diaphragm and sciatic nerve-sartorius preparations. However, little is known about its electrophysiological effects on cardiac myocytes. In this study, electrophysiological activities of ventricular myocytes were detected by 100 µg/mL venom of O.huwena, and whole cell patch-clamp technique was used to study the acute effects of the venom on action potential (AP), sodium current (INa), potassium currents (IKr, IKs, Ito1 and IK1) and L-type calcium current (ICaL). The results indicated that the venom prolongs APD90 in a frequency-dependent manner in isolated neonatal rat ventricular myocytes. 100 µg/mL venom inhibited 72.3 ± 3.6% INa current, 58.3 ± 4.2% summit current and 54 ± 6.1% the end current of IKr, and 65 ± 3.3% ICaL current, yet, didn't have obvious effect on IKs, Ito1 and IK1 currents. In conclusion, the O.huwena venom represented a multifaceted pharmacological profile. It contains abundant of cardiac channel antagonists and might be valuable tools for investigation of both channels and anti- arrhythmic therapy development.


Subject(s)
Electrophysiological Phenomena/drug effects , Myocytes, Cardiac/drug effects , Spider Venoms/pharmacology , Spiders/chemistry , Animals , Calcium/metabolism , Dose-Response Relationship, Drug , Myocytes, Cardiac/metabolism , Patch-Clamp Techniques , Potassium/metabolism , Rats , Sodium/metabolism
8.
Toxins (Basel) ; 10(2)2018 02 02.
Article in English | MEDLINE | ID: mdl-29393892

ABSTRACT

Jingzhaotoxin-34 (JZTX-34) is a selective inhibitor of tetrodotoxin-sensitive (TTX-S) sodium channels. In this study, we found that JZTX-34 selectively acted on Nav1.7 with little effect on other sodium channel subtypes including Nav1.5. If the DIIS3-S4 linker of Nav1.5 is substituted by the correspond linker of Nav1.7, the sensitivity of Nav1.5 to JZTX-34 extremely increases to 1.05 µM. Meanwhile, a mutant D816R in the DIIS3-S4 linker of Nav1.7 decreases binding affinity of Nav1.7 to JZTX-34 about 32-fold. The reverse mutant R800D at the corresponding position in Nav1.5 greatly increased its binding affinity to JZTX-34. This implies that JZTX-34 binds to DIIS3-S4 linker of Nav1.7 and the critical residue of Nav1.7 is D816. Unlike ß-scorpion toxin trapping sodium channel in an open state, activity of JZTX-34 requires the sodium channel to be in a resting state. JZTX-34 exhibits an obvious analgesic effect in a rodent pain model. Especially, it shows a longer duration and is more effective than morphine in hot pain models. In a formalin-induced pain model, JZTX-34 at dose of 2 mg/kg is equipotent with morphine (5 mg/kg) in the first phase and several-fold more effective than morphine in second phase. Taken together, our data indicate that JZTX-34 releases pain by selectively binding to the domain II voltage sensor of Nav1.7 in a closed configuration.


Subject(s)
Analgesics/therapeutic use , NAV1.7 Voltage-Gated Sodium Channel/physiology , Pain/drug therapy , Voltage-Gated Sodium Channel Blockers/therapeutic use , Analgesics/pharmacology , Animals , Female , Ganglia, Spinal/cytology , HEK293 Cells , Humans , Male , Mice , Neurons/drug effects , Neurons/physiology , Rats, Sprague-Dawley , Voltage-Gated Sodium Channel Blockers/pharmacology
9.
Toxicon ; 111: 13-21, 2016 Mar 01.
Article in English | MEDLINE | ID: mdl-26721415

ABSTRACT

Peptide toxins often have divergent pharmacological functions and are powerful tools for a deep review on the current understanding of the structure-function relationships of voltage-gated sodium channels (VGSCs). However, knowing about the interaction of site 3 toxins from tarantula venoms with VGSCs is not sufficient. In the present study, using whole-cell patch clamp technique, we determined the effects of Jingzhaotoxin-I (JZTX-I) on five VGSC subtypes expressed in HEK293 cells. The results showed that JZTX-I could inhibit the inactivation of rNav1.2, rNav1.3, rNav1.4, hNav1.5 and hNav1.7 channels with the IC50 of 870 ± 8 nM, 845 ± 4 nM, 339 ± 5 nM, 335 ± 9 nM, and 348 ± 6 nM, respectively. The affinity of the toxin interaction with subtypes (rNav1.4, hNav1.5, and hNav1.7) was only 2-fold higher than that for subtypes (rNav1.2 and rNav1.3). The toxin delayed the inactivation of VGSCs without affecting the activation and steady-state inactivation kinetics in the physiological range of voltages. Site-directed mutagenesis indicated that the toxin interacted with site 3 located at the extracellular S3-S4 linker of domain IV, and the acidic residue Asp at the position1609 in hNav1.5 was crucial for JZTX-I activity. Our results provide new insights in single key residue that allows toxins to recognize distinct ion channels with similar potency and enhance our understanding of the structure-function relationships of toxin-channel interactions.


Subject(s)
Peptides/pharmacology , Spider Venoms/pharmacology , Spiders/physiology , Voltage-Gated Sodium Channel Blockers/pharmacology , Voltage-Gated Sodium Channels/metabolism , Amino Acid Sequence , Animals , HEK293 Cells , Humans , Membrane Potentials/drug effects , Molecular Sequence Data , Peptides/chemistry , Spider Venoms/chemistry , Voltage-Gated Sodium Channel Blockers/chemistry
11.
J Biol Chem ; 290(22): 14192-207, 2015 May 29.
Article in English | MEDLINE | ID: mdl-25770214

ABSTRACT

Spider venom is a complex mixture of bioactive peptides to subdue their prey. Early estimates suggested that over 400 venom peptides are produced per species. In order to investigate the mechanisms responsible for this impressive diversity, transcriptomics based on second generation high throughput sequencing was combined with peptidomic assays to characterize the venom of the tarantula Haplopelma hainanum. The genes expressed in the venom glands were identified, and the bioactivity of their protein products was analyzed using the patch clamp technique. A total of 1,136 potential toxin precursors were identified that clustered into 90 toxin groups, of which 72 were novel. The toxin peptides clustered into 20 cysteine scaffolds that included between 4 and 12 cysteines, and 14 of these groups were newly identified in this spider. Highly abundant toxin peptide transcripts were present and resulted from hypermutation and/or fragment insertion/deletion. In combination with variable post-translational modifications, this genetic variability explained how a limited set of genes can generate hundreds of toxin peptides in venom glands. Furthermore, the intraspecies venom variability illustrated the dynamic nature of spider venom and revealed how complex components work together to generate diverse bioactivities that facilitate adaptation to changing environments, types of prey, and milking regimes in captivity.


Subject(s)
Proteomics/methods , Spider Venoms/chemistry , Amino Acid Sequence , Animals , Base Sequence , Cysteine/chemistry , DNA, Complementary/metabolism , Expressed Sequence Tags , Gene Deletion , Molecular Sequence Data , Mutation , Neurons/metabolism , Neurotoxins/chemistry , Patch-Clamp Techniques , Peptides/chemistry , Phylogeny , Protein Processing, Post-Translational , Rats , Sequence Analysis, DNA , Sequence Homology, Amino Acid , Sequence Homology, Nucleic Acid , Spiders , Transcription, Genetic
12.
Toxins (Basel) ; 6(8): 2568-79, 2014 Aug 21.
Article in English | MEDLINE | ID: mdl-25153257

ABSTRACT

Intermediate-conductance Ca2+-activated K+ (IK) channels are calcium/calmodulin-regulated voltage-independent K+ channels. Activation of IK currents is important in vessel and respiratory tissues, rendering the channels potential drug targets. A variety of small organic molecules have been synthesized and found to be potent activators of IK channels. However, the poor selectivity of these molecules limits their therapeutic value. Venom-derived peptides usually block their targets with high specificity. Therefore, we searched for novel peptide activators of IK channels by testing a series of toxins from spiders. Using electrophysiological experiments, we identified hainantoxin-I (HNTX-I) as an IK-channel activator. HNTX-I has little effect on voltage-gated Na+ and Ca2+ channels from rat dorsal root ganglion neurons and on the heterologous expression of voltage-gated rapidly activating delayed rectifier K+ channels (human ether-à-go-go-related gene; human ERG) in HEK293T cells. Only 35.2% ± 0.4% of the currents were activated in SK channels, and there was no effect on BK channels. We demonstrated that HNTX-I was not a phrenic nerve conduction blocker or acutely toxic. This is believed to be the first report of a peptide activator effect on IK channels. Our study suggests that the activity and selectivity of HNTX-I on IK channels make HNTX-I a promising template for designing new drugs for cardiovascular diseases.


Subject(s)
Intermediate-Conductance Calcium-Activated Potassium Channels/physiology , Peptides/pharmacology , Spider Venoms/pharmacology , Toxins, Biological/pharmacology , Animals , Cells, Cultured , Cockroaches , Female , Ganglia, Spinal , HEK293 Cells , Humans , Male , Mice , Neurons/drug effects , Neurons/physiology , Peptides/toxicity , Phrenic Nerve/drug effects , Phrenic Nerve/physiology , Rats, Sprague-Dawley , Spider Venoms/toxicity , Spiders , Toxicity Tests, Acute , Toxins, Biological/toxicity
13.
Toxins (Basel) ; 6(7): 2177-93, 2014 Jul 23.
Article in English | MEDLINE | ID: mdl-25055801

ABSTRACT

Voltage-gated sodium channels (VGSCs; NaV1.1-NaV1.9) have been proven to be critical in controlling the function of excitable cells, and human genetic evidence shows that aberrant function of these channels causes channelopathies, including epilepsy, arrhythmia, paralytic myotonia, and pain. The effects of peptide toxins, especially those isolated from spider venom, have shed light on the structure-function relationship of these channels. However, most of these toxins have not been analyzed in detail. In particular, the bioactive faces of these toxins have not been determined. Jingzhaotoxin (JZTX)-V (also known as ß-theraphotoxin-Cj2a) is a 29-amino acid peptide toxin isolated from the venom of the spider Chilobrachys jingzhao. JZTX-V adopts an inhibitory cysteine knot (ICK) motif and has an inhibitory effect on voltage-gated sodium and potassium channels. Previous experiments have shown that JZTX-V has an inhibitory effect on TTX-S and TTX-R sodium currents on rat DRG cells with IC50 values of 27.6 and 30.2 nM, respectively, and is able to shift the activation and inactivation curves to the depolarizing and the hyperpolarizing direction, respectively. Here, we show that JZTX-V has a much stronger inhibitory effect on NaV1.4, the isoform of voltage-gated sodium channels predominantly expressed in skeletal muscle cells, with an IC50 value of 5.12 nM, compared with IC50 values of 61.7-2700 nM for other heterologously expressed NaV1 subtypes. Furthermore, we investigated the bioactive surface of JZTX-V by alanine-scanning the effect of toxin on NaV1.4 and demonstrate that the bioactive face of JZTX-V is composed of three hydrophobic (W5, M6, and W7) and two cationic (R20 and K22) residues. Our results establish that, consistent with previous assumptions, JZTX-V is a Janus-faced toxin which may be a useful tool for the further investigation of the structure and function of sodium channels.


Subject(s)
NAV1.4 Voltage-Gated Sodium Channel/physiology , Peptides/pharmacology , Spider Venoms/pharmacology , Voltage-Gated Sodium Channel Blockers/pharmacology , Animals , HEK293 Cells , Humans , Mutation , Patch-Clamp Techniques , Peptides/chemistry , Peptides/genetics , Rats , Spider Venoms/chemistry , Spider Venoms/genetics , Transfection , Voltage-Gated Sodium Channel Blockers/chemistry
14.
PLoS One ; 9(6): e100682, 2014.
Article in English | MEDLINE | ID: mdl-24949878

ABSTRACT

Spider venom comprises a mixture of compounds with diverse biological activities, which are used to capture prey and defend against predators. The peptide components bind a broad range of cellular targets with high affinity and selectivity, and appear to have remarkable structural diversity. Although spider venoms have been intensively investigated over the past few decades, venomic strategies to date have generally focused on high-abundance peptides. In addition, the lack of complete spider genomes or representative cDNA libraries has presented significant limitations for researchers interested in molecular diversity and understanding the genetic mechanisms of toxin evolution. In the present study, second-generation sequencing technologies, combined with proteomic analysis, were applied to determine the diverse peptide toxins in venom of the Chinese bird spider Ornithoctonus huwena. In total, 626 toxin precursor sequences were retrieved from transcriptomic data. All toxin precursors clustered into 16 gene superfamilies, which included six novel superfamilies and six novel cysteine patterns. A surprisingly high number of hypermutations and fragment insertions/deletions were detected, which accounted for the majority of toxin gene sequences with low-level expression. These mutations contribute to the formation of diverse cysteine patterns and highly variable isoforms. Furthermore, intraspecific venom variability, in combination with variable transcripts and peptide processing, contributes to the hypervariability of toxins in venoms, and associated rapid and adaptive evolution of toxins for prey capture and defense.


Subject(s)
Arachnida/genetics , Gene Expression Profiling , Spider Venoms/genetics , Toxins, Biological/biosynthesis , Amino Acid Sequence , Animals , Arachnida/chemistry , Gene Library , Phylogeny , Sequence Alignment , Spider Venoms/chemistry , Toxins, Biological/classification , Toxins, Biological/genetics
15.
Toxicon ; 87: 104-12, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24930961

ABSTRACT

Cardiac ion channels are membrane-spanning proteins that allow the passive movement of ions across the cell membrane along its electrochemical gradient, which regulates the resting membrane potential as well as the shape and duration of the cardiac action potential. Additionally, they have been recognized as potential targets for the actions of neurotransmitters, hormones and drugs of cardiac diseases. Spider venoms contain high abundant of toxins that target diverse ion channels and have been considered as a potential resource of new constituents with specific pharmacological properties. However, few peptides from spider venoms were detected as cardiac channel antagonists. In order to explore the effects of the venom of Ornithoctonus hainana on the action potential and ionic currents of neonatal rat ventricular myocytes (NRVMs), whole cell patch clamp technique was used to record action potential duration (APD), sodium current (INa), L calcium current (ICaL), rapidly activating and inactivating transient outward currents (Ito1), rapid (IKr) and slow (IKs) components of the delayed rectifier currents and the inward rectifier currents (IK1). Our results showed that 100 µg/mL venom obviously prolonged APDs. Significantly, the venom could inhibit INa and ICaL effectively, while no evident inhibitory effects on cardiac K(+) channels (Ito1, Iks, Ikr and Ik1) were observed, suggesting that the venom represented a multifaceted pharmacological profile. The effect of venom on Na(+) and Ca(2+) currents of ventricular myocytes revealed that the hainan venom as a rich resource of cardiac channel antagonists might be valuable tools for the investigation of both channels and drug development.


Subject(s)
Electrophysiological Phenomena/drug effects , Ion Channels/drug effects , Myocytes, Cardiac/drug effects , Spider Venoms/toxicity , Action Potentials/drug effects , Animals , Animals, Newborn , Calcium Channels, L-Type/drug effects , Calcium Channels, L-Type/metabolism , Female , Ion Channels/metabolism , Patch-Clamp Techniques , Rats , Sodium Channels/drug effects , Sodium Channels/metabolism
16.
J Proteomics ; 106: 162-80, 2014 Jun 25.
Article in English | MEDLINE | ID: mdl-24780724

ABSTRACT

The scorpion Mesobuthus martensii is the most populous species in eastern Asian countries, and several toxic components have been identified from their venoms. Nevertheless, a complete proteomic profile of the venom of M. martensii is still not available. In this study, the venom of M. martensii was analyzed by comprehensive proteomic approaches. 153 fractions were isolated from the M. martensii venom by 2-DE, SDS-PAGE and RP-HPLC. The ESI-Q-TOF MS results of all fractions were used to search the scorpion genomic and transcriptomic databases. Totally, 227 non-redundant protein sequences were unambiguously identified, composed of 134 previously known and 93 previously unknown proteins. Among 134 previously known proteins, 115 proteins were firstly confirmed from the M. martensii crude venom and 19 toxins were confirmed once again, involving 43 typical toxins, 7 atypical toxins, 12 venom enzymes and 72 cell associated proteins. In typical toxins, 7 novel-toxin sequences were identified, including 3 Na(+)-channel toxins, 3K(+)-channel toxins and 1 no-annotation toxin. These results increased 230% (115/50) venom components compared with previous studies from the M. martensii venom, especially 50% (24/48) typical toxins. Additionally, a mass fingerprint obtained by MALDI-TOF MS indicated that the scorpion venom contained more than 200 different molecular mass components. BIOLOGICAL SIGNIFICANCE: This work firstly gave a systematic investigation of the M. martensii venom by combined proteomics strategy coupled with genomics and transcriptomics. A large number of protein components were unambiguously identified from the venom of M. martensii, most of which were confirmed for the first time. We also contributed 7 novel-toxin sequences and 93 protein sequences previously unknown to be part of the venom, for which we assigned potential biological functions. Besides, we obtained a mass fingerprint of the M. martensii venom. Together, our study not only provides the most comprehensive catalog of the molecular diversity of the M. martensii venom at the proteomic level, but also enriches the composition information of scorpion venom.


Subject(s)
Proteomics/methods , Scorpion Venoms/chemistry , Scorpions/chemistry , Amino Acid Motifs , Amino Acid Sequence , Animals , Antimicrobial Cationic Peptides/chemistry , Chloride Channels/chemistry , Chromatography, High Pressure Liquid , Electrophoresis, Gel, Two-Dimensional , Electrophoresis, Polyacrylamide Gel , Genomics , Hydrogen-Ion Concentration , Molecular Sequence Data , Potassium Channels/chemistry , Sequence Homology, Amino Acid , Sodium Channels/chemistry , Spectrometry, Mass, Electrospray Ionization , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Tandem Mass Spectrometry , Transcriptome
17.
Sci Rep ; 4: 4569, 2014 Apr 02.
Article in English | MEDLINE | ID: mdl-24691553

ABSTRACT

The voltage-gated sodium channel (VGSC) interacting peptide is of special interest for both basic research and pharmaceutical purposes. In this study, we established a yeast-two-hybrid based strategy to detect the interaction(s) between neurotoxic peptide and the extracellular region of VGSC. Using a previously reported neurotoxin JZTX-III as a model molecule, we demonstrated that the interactions between JZTX-III and the extracellular regions of its target hNav1.5 are detectable and the detected interactions are directly related to its activity. We further applied this strategy to the screening of VGSC interacting peptides. Using the extracellular region of hNav1.5 as the bait, we identified a novel sodium channel inhibitor SSCM-1 from a random peptide library. This peptide selectively inhibits hNav1.5 currents in the whole-cell patch clamp assays. This strategy might be used for the large scale screening for target-specific interacting peptides of VGSCs or other ion channels.


Subject(s)
Membrane Transport Modulators/metabolism , Peptides/metabolism , Voltage-Gated Sodium Channels/metabolism , Amino Acid Sequence , Animals , Cell Line , Extracellular Matrix/metabolism , HEK293 Cells , Humans , Molecular Sequence Data , Neurotoxins/metabolism
18.
Neuropharmacology ; 79: 657-67, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24467846

ABSTRACT

N-type calcium channels play important roles in the control of neurotransmission release and transmission of pain signals to the central nervous system. Their selective inhibitors are believed to be potential drugs for treating chronic pain. In this study, a novel neurotoxin named Huwentoxin-XVI (HWTX-XVI) specific for N-type calcium channels was purified and characterized from the venom of Chinese tarantula Ornithoctonus huwena. HWTX-XVI is composed of 39 amino acid residues including six cysteines that constitute three disulfide bridges. HWTX-XVI could almost completely block the twitch response of rat vas deferens to low-frequency electrical stimulation. Electrophysiological assay indicated that HWTX-XVI specifically inhibited N-type calcium channels in rat dorsal root ganglion cells (IC50 ∼60 nM). The inhibitory effect of HWTX-XVI on N-type calcium channel currents was dose-dependent and similar to that of CTx-GVIA and CTx-MVIIA. However, the three peptides exhibited markedly different degrees of reversibility after block. The toxin had no effect on voltage-gated T-type calcium channels, potassium channels or sodium channels. Intraperitoneal injection of the toxin HWTX-XVI to rats elicited significant analgesic responses to formalin-induced inflammation pain. Toxin treatment also changed withdrawal latency in hot plate tests. Intriguingly, we found that intramuscular injection of the toxin reduced mechanical allodynia induced by incisional injury in Von Frey test. Thus, our findings suggest that the analgesic potency of HWTX-XVI and its greater reversibility could contribute to the design of a novel potential analgesic agent with high potency and low side effects.


Subject(s)
Analgesics/pharmacology , Calcium Channel Blockers/pharmacology , Calcium Channels, N-Type/metabolism , Hyperalgesia/drug therapy , Pain/drug therapy , Spider Venoms/pharmacology , Amino Acid Sequence , Analgesics/adverse effects , Analgesics/chemistry , Animals , Base Sequence , Calcium Channel Blockers/adverse effects , Calcium Channel Blockers/chemistry , Calcium Channels, T-Type/metabolism , Dose-Response Relationship, Drug , Female , Ganglia, Spinal/drug effects , Ganglia, Spinal/physiology , Male , Molecular Sequence Data , Potassium Channels/metabolism , Rats , Rats, Sprague-Dawley , Sodium Channels/metabolism , Spider Venoms/adverse effects , Spider Venoms/chemistry , Spiders , Vas Deferens/drug effects , Vas Deferens/physiology , Xenopus laevis
19.
Sheng Wu Gong Cheng Xue Bao ; 27(6): 900-8, 2011 Jun.
Article in Chinese | MEDLINE | ID: mdl-22034819

ABSTRACT

Kv2.1 channel currents in pancreatic beta-cells are thought to contribute to action potential repolarization and thereby modulate insulin secretion. Because of its central role in this important physiological process, Kv2.1 channel is a promising target for the treatment of type 2 diabetes. Jingzhaotoxin-XI (JZTX-XI) is a novel peptide neurotoxin isolated from the venom of the spider Chilobrachys jingzhao. Two-microelectrode voltage clamp experiments had showed that the toxin inhibited Kv2.1 potassium currents expressed in Xenopus Laevis oocytes. In order to investigate the structure-function relationship of JZTX-XI, the natural toxin and a mutant of JZTX-XI in which Arg3 was replaced by Ala, were synthesized by solid-phase chemistry method with Fmoc-protected amino acids on the PS3 automated peptide synthesizer. Reverse-phase high performance liquid chromatography (RP-HPLC) and matrix assisted laser desorption/ ionization time-of-flight mass spectrometry (MALDI-TOF/TOF MS) were used to monitor the oxidative refolding process of synthetic linear peptides to find the optimal renaturation conditions of these toxins. The experiments also proved that the relative molecular masses of refolded peptides were in accordance with their theoretical molecular masses. RP-HPLC chromatogram of co-injected native and refolded JZTX-XI was a single peak. Under the whole-cell patch-clamp mode, JZTX-XI could completely inhibit hKv2.1 and hNav1.5 channels currents expressed in HEK293T cells with IC50 values of 95.8 nmol/L and 437.1 nmol/L respectively. The mutant R3A-JZTX-XI could also inhibit hKv2.1 and hNav1.5 channel currents expressed in HEK293T cells with IC50 values of 1.22 micromol/L and 1.96 micromol/L respectively. However, the prohibitive levels of R3A-JZTX-XI on hKv2.1 and hNav1.5 channels were reduced by about 12.7 times and 4.5 times respectively, indicating that Arg3 was a key amino acid residue relative to the hKv2.1 channel activity of JZTX-XI, but it is also an amino acid residue correlated with the binding activity of JZTX-XI to hNav1.5 channel. Our findings should be helpful to develop JZTX-XI into a molecular probe and drug candidate targeting to Kv2.1 potassium channel in the pancreas.


Subject(s)
Insulin-Secreting Cells/metabolism , Mutant Proteins , Neurotoxins/pharmacology , Shab Potassium Channels/antagonists & inhibitors , Animals , HEK293 Cells , Humans , Mutant Proteins/genetics , Mutant Proteins/pharmacology , NAV1.5 Voltage-Gated Sodium Channel/metabolism , Neurotoxins/chemical synthesis , Neurotoxins/genetics , Protein Refolding , Shab Potassium Channels/metabolism , Sodium Channel Blockers/pharmacology , Spider Venoms/genetics , Spider Venoms/pharmacology , Transfection
20.
FASEB J ; 25(9): 3177-85, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21665957

ABSTRACT

With conserved structural scaffold and divergent electrophysiological functions, animal toxins are considered powerful tools for investigating the basic structure-function relationship of voltage-gated sodium channels. Jingzhaotoxin-III (ß-TRTX-Cj1α) is a unique sodium channel gating modifier from the tarantula Chilobrachys jingzhao, because the toxin can selectively inhibit the activation of cardiac sodium channel but not neuronal subtypes. However, the molecular basis of JZTX-III interaction with sodium channels remains unknown. In this study, we showed that JZTX-III was efficiently expressed by the secretory pathway in yeast. Alanine-scanning analysis indicated that 2 acidic residues (Asp1, Glu3) and an exposed hydrophobic patch, formed by 4 Trp residues (residues 8, 9, 28 and 30), play important roles in the binding of JZTX-III to Nav1.5. JZTX-III docked to the Nav1.5 DIIS3-S4 linker. Mutations S799A, R800A, and L804A could additively reduce toxin sensitivity of Nav1.5. We also demonstrated that the unique Arg800, not emerging in other sodium channel subtypes, is responsible for JZTX-III selectively interacting with Nav1.5. The reverse mutation D816R in Nav1.7 greatly increased the sensitivity of the neuronal subtype to JZTX-III. Conversely, the mutation R800D in Nav1.5 decreased JZTX-III's IC50 by 72-fold. Therefore, our results indicated that JZTX-III is a site 4 toxin, but does not possess the same critical residues on sodium channels as other site 4 toxins. Our data also revealed the underlying mechanism for JZTX-III to be highly specific for the cardiac sodium channel.


Subject(s)
Peptides/toxicity , Sodium Channels/metabolism , Spider Venoms/toxicity , Spiders/physiology , Amino Acid Substitution , Animals , Gene Expression Regulation , HEK293 Cells , Humans , Models, Molecular , Mutagenesis, Site-Directed , Mutation , NAV1.5 Voltage-Gated Sodium Channel , Patch-Clamp Techniques , Peptides/chemistry , Peptides/genetics , Protein Conformation , Sodium Channels/genetics , Spider Venoms/chemistry , Spider Venoms/genetics , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...