Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 2416, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38499570

ABSTRACT

Traditionally, manipulation of spatiotemporal coupling (STC) of the ultrafast light fields can be actualized in the space-spectrum domain with some 4-f pulse shapers, which suffers usually from some limitations, such as spectral/pixel resolution and information crosstalk associated with the 4-f pulse shapers. This work introduces a novel mechanism for direct space-time manipulation of ultrafast light fields to overcome the limitations. This mechanism combines a space-dependent time delay with some spatial geometrical transformations, which has been experimentally proved by generating a high-quality STC light field, called light spring (LS). The LS, owing a broad topological charge bandwidth of 11.5 and a tunable central topological charge from 2 to -11, can propagate with a stable spatiotemporal intensity structure from near to far fields. This achievement implies the mechanism provides an efficient way to generate complex STC light fields, such as LS with potential applications in information encryption, optical communication, and laser-plasma acceleration.

2.
Opt Express ; 30(15): 27429-27438, 2022 Jul 18.
Article in English | MEDLINE | ID: mdl-36236914

ABSTRACT

High spatial resolution on the image plane (intrinsic spatial resolution) has always been a problem for ultrafast imaging. Single-shot ultrafast imaging methods can achieve high spatial resolution on the object plane through amplification systems but with low intrinsic spatial resolutions. We present frequency domain integration sequential imaging (FISI), which encodes a transient dynamic by an inversed 4f (IFF) system and decodes it using optical spatial frequencies recognition (OFR), which overcomes the limitation of the spatial frequencies recognition algorithm. In an experiment on the process of an air plasma channel, FISI achieved shadow imaging of the channel with a framing rate of 1.26×1013 fps and an intrinsic spatial resolution of 108 lp/mm (the spatial resolution on the image plane). Owing to its excellent framing time and high intrinsic spatial resolution, FISI can probe both repeatable and unrepeatable ultrafast phenomena, such as laser-induced damage, plasma physics, and shockwave interactions in living cells with high quality.

3.
Opt Express ; 30(6): 9727-9744, 2022 Mar 14.
Article in English | MEDLINE | ID: mdl-35299392

ABSTRACT

We propose a scheme to manipulate the local orbital angular momentum (OAM) of the ultra-broadband (0.1-30 THz) terahertz (THz) waves from the laser-induced short air filament via chirping the few-cycle vortex laser pump. The simulation results show that either the THz vortex pulses with linear azimuth-dependent phases or the THz angular accelerating vortex beams (AAVBs) with nonlinear azimuth-dependent phases can be produced by tuning the chirp parameter of the pump. Thus, the dominant physical mechanism for THz generation can be determined. The THz temporal and transverse spatial distributions can be also controlled by the chirp parameter. Furthermore, their local OAM density distributions present very complex structures because most of the modulated azimuthal intensity and the corresponding local angular helicity distributions are not able to cancel out completely. Via analyzing the simulated THz results at the different pump intensities, we classify the initial pump intensity into three cases. For the low intensity case, the Kerr effect comes into prominence, so the generated THz radiation shall be vortex pulses. While for the high intensity case, the leading plasma effect dominates. In contrast, when the pump intensity is at the medium level, the Kerr nonlinearity and the plasma effect may be comparable and competitive. Basically, THz AAVBs are generated for both high and medium intensity cases. Our study will provide the possibility for studying the optically induced rotation technology more intuitively from the perspective of angular momentum transfer.

4.
Opt Express ; 29(17): 27298-27308, 2021 Aug 16.
Article in English | MEDLINE | ID: mdl-34615148

ABSTRACT

A novel single-shot ultrafast all-optical photography with raster principle (OPR) that can capture real-time imaging of ultrafast phenomena is proposed and demonstrated. It consists of a sequentially timed module (STM), spectral-shaping module (SSM), and raster framing camera (RFC). STM and SSM are used for linearly encoding frequency-time mapping and system calibration, respectively. The function of the RFC is sampling the target by microlens arrays and framing on the basis of frequency-time-spatial positions conversion. We demonstrated the recording of transient scenes with the spatial resolution of ∼90lp/mm, the frame number of 12 and the frame rate of 2 trillion frames per second (Tfps) in single-shot. Thanks to its high spatial-temporal resolution, high frame rate (maximum up to 10 Tfps or more) and sufficient frame number, our OPR can observe the dynamic processes with complex spatial structure at the atomic time scale (10 fs∼1ps), which is promising for application in plasma physics, shock waves in laser-induced damage, and dynamics of condensed matter materials.

5.
Opt Express ; 29(14): 22659-22666, 2021 Jul 05.
Article in English | MEDLINE | ID: mdl-34266024

ABSTRACT

We present experimentally an obvious enhancement of the terahertz (THz) radiation with two paralleled filaments pumped by two-color laser fields for a full use of a high laser power, compared with single filament. By mapping the 3-dimensional electric trajectories of generated THz fields with a (111) ZnTe crystal, we observe that the total THz polarization from two filaments can be manipulated by varying the time delay between the two orthogonally polarized pumps, which agrees well with the simulations under the photocurrent model. Notably, the power and spectrum of the THz field almost keep unchanged while manipulating the ellipticity of the THz polarization, which is important for a polarization-controllable THz source.

6.
Opt Express ; 27(11): 16103-16110, 2019 May 27.
Article in English | MEDLINE | ID: mdl-31163796

ABSTRACT

This paper proposes a liquid crystal-based order adjustable q-plate system. The system, which is solid-state and electrically controlled without any mechanical components, consists of several bit cells and one symbol cell. The bit cells can be electrically selected whether to modulate the beam. The magnitude of the order of the q-plate system can be controlled by activating specific bit cells. And the sign of the order can be changed by controlling the voltages in the symbol cell. The whole system can realize the function of the order adjustable q-plate with the order ranging from -2n + 1 to 2n-1 with n bit cells. In our experiment, the system with 4 bits is verified. Based on the q-plate system, the vector beams and optical vortexes with the orders ranging from -15 to 15 can be generated.

7.
Opt Lett ; 44(4): 795-798, 2019 Feb 15.
Article in English | MEDLINE | ID: mdl-30767989

ABSTRACT

Vector beams with different polarization topological orders (PTOs) are the eigenmodes of traditional optical fibers and are orthogonal to each other, so the PTO multiplexing channel is a promising candidate for the oncoming generation of optical communication. Here we demonstrate experimentally a PTO sorting system with high separation resolution based on the diffractive splitting (DS) method. Our experiments show that our design with the DS method helps to enhance the separation resolution to 77.5% from 58%, compared to a design without the application of a DS method. Theoretically, to increase the copy number can promote the separation resolution further. This Letter provides a high-resolution way to decode information from PTO division multiplexing.

8.
Opt Lett ; 44(4): 887-890, 2019 Feb 15.
Article in English | MEDLINE | ID: mdl-30768012

ABSTRACT

Converting a Gaussian mode to a vortex beam is much more inconvenient in the terahertz (THz) region than in the near-infrared (NIR) region due to underdevelopment of THz components and strong THz diffraction. This Letter reports the direct generation of THz vortex pulses by optical difference-frequency between two NIR chirped pulses with different topological charges (TCs). By designing a passive and transmissive device for a collinear NIR pulse pair with conjugated TCs, we have experimentally obtained stable THz vortex pulses with a TC value of 2 or -2. The process needs no THz components and so is flexible to be realized and has promising applications in the THz field.

9.
Sci Rep ; 6: 33837, 2016 Sep 26.
Article in English | MEDLINE | ID: mdl-27666528

ABSTRACT

Comprehensive characterization of ultrafast optical field is critical for ultrashort pulse generation and its application. This paper combines two-step phase-shifting (TSPS) into the spectral phase interferometry for direct electric-field reconstruction (SPIDER) to improve the reconstruction of ultrafast optical-fields. This novel SPIDER can remove experimentally the dc portion occurring in traditional SPIDER method by recording two spectral interferograms with π phase-shifting. As a result, the reconstructed results are much less disturbed by the time delay between the test pulse replicas and the temporal widths of the filter window, thus more reliable. What is more, this SPIDER can work efficiently even the time delay is so small or the measured bandwidth is so narrow that strong overlap happens between the dc and ac portions, which allows it to be able to characterize the test pulses with complicated temporal/spectral structures or narrow bandwidths.

10.
Opt Lett ; 39(13): 3778-81, 2014 Jul 01.
Article in English | MEDLINE | ID: mdl-24978735

ABSTRACT

We present a modified THz electro-optic sampling method to combine the advantages of its two traditional counterparts at near 0° and 45° optical biases: excellent ability to cancel the background noises, high optical modulation, and large dynamical range. The first advantage results from the method's symmetrical layout to get dynamical noise cancellation. By setting the static birefringent phases of the two balanced beams with a pair of opposite numbers, our setup can record THz waveforms without distortion with its maximal modulation depth, thus optimal signal-to-noise ratio (SNR). The setting also releases the linearity of the measured signal from the static birefringence, thus enlarging greatly the linear dynamical range. For a given THz field, the recorded SNR with our setup, without a lock-in, is more than 10 times higher than that with the "crossed and balanced" design [IEEE Trans. Microwave Theory Tech. 47, 2644 (1999)].

11.
Opt Express ; 19(9): 8557-64, 2011 Apr 25.
Article in English | MEDLINE | ID: mdl-21643106

ABSTRACT

This paper presents a novel design for broadband zero-order half-wave plates to eliminate the first-order or up to second-order wavelength-dependent birefringent phase retardation (BPR) with 2 or 3 different birefringent materials. The residual BPRs of the plates increase monotonously with the wavelength deviation from a selected wavelength, so the plates are applicable to the broadband light pulses which gather most of the light energy around their central wavelengths. The model chooses the materials by the birefringent dispersion coefficient and evaluates the performances of the plates by the weighted average of the absolute value of residual BPR in order to emphasize the contributions of the incident spectral components whose possess higher energies.


Subject(s)
Optical Devices , Refractometry/instrumentation , Birefringence , Computer-Aided Design , Equipment Design , Equipment Failure Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...