Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Nat Commun ; 14(1): 5540, 2023 Sep 08.
Article in English | MEDLINE | ID: mdl-37684248

ABSTRACT

Understanding the competing modes of brittle versus ductile fracture is critical for preventing the failure of body-centered cubic (BCC) refractory metals. Despite decades of intensive investigations, the nanoscale fracture processes and associated atomistic mechanisms in BCC metals remain elusive due to insufficient atomic-scale experimental evidence. Here, we perform in situ atomic-resolution observations of nanoscale fracture in single crystals of BCC Mo. The crack growth process involves the nucleation, motion, and interaction of dislocations on multiple 1/2 < 111 > {110} slip systems at the crack tip. These dislocation activities give rise to an alternating sequence of crack-tip plastic shearing, resulting in crack blunting, and local separation normal to the crack plane, leading to crack extension and sharpening. Atomistic simulations reveal the effects of temperature and strain rate on these alternating processes of crack growth, providing insights into the dislocation-mediated mechanisms of the ductile to brittle transition in BCC refractory metals.

2.
Nat Commun ; 13(1): 3898, 2022 Jul 06.
Article in English | MEDLINE | ID: mdl-35794157

ABSTRACT

The rise of twistronics has increased the attention of the community to the twist-angle-dependent properties of two-dimensional van der Waals integrated architectures. Clarification of the relationship between twist angles and interlayer mechanical interactions is important in benefiting the design of two-dimensional twisted structures. However, current mechanical methods have critical limitations in quantitatively probing the twist-angle dependence of two-dimensional interlayer interactions in monolayer limits. Here we report a nanoindentation-based technique and a shearing-boundary model to determine the interlayer mechanical interactions of twisted bilayer MoS2. Both in-plane elastic moduli and interlayer shear stress are found to be independent of the twist angle, which is attributed to the long-range interaction of intermolecular van der Waals forces that homogenously spread over the interfaces of MoS2. Our work provides a universal approach to determining the interlayer shear stress and deepens the understanding of twist-angle-dependent behaviours of two-dimensional layered materials.

3.
Phys Rev Lett ; 127(6): 066101, 2021 Aug 06.
Article in English | MEDLINE | ID: mdl-34420348

ABSTRACT

As an emerging ceramic material, recently synthesized nanotwinned diamond composites with various polytypes embedded in nanoscale twins exhibit unprecedented fracture toughness without sacrificing hardness. However, the toughening and crack healing mechanisms at the atomic scale and the associated crack propagation process of nanotwinned diamond composites remain mysterious. Here, we perform large-scale atomistic simulations of crack propagation in nanotwinned diamond composites to explore the underlying toughening and crack healing mechanisms in nanotwinned diamond composites. Our simulation results show that nanotwinned diamond composites have a higher fracture energy than single-crystalline and nanotwinned diamonds, which originates from multiple toughening mechanisms, including twin boundary and phase boundary impeding crack propagation, crack deflection and zigzag paths in nanotwins and sinuous paths in polytypes, and the formation of disordered atom clusters. More remarkably, our simulations reproduce more detailed crack propagation processes at the atomic scale, which is inaccessible by experiments. Moreover, our simulations reveal that crack healing occurs due to the rebonding of atoms on fracture surfaces during unloading and that the extent of crack healing is associated with whether the crack surfaces are clean. Our current study provides mechanistic insights into a fundamental understanding of toughening and crack healing mechanisms in nanotwinned diamond composites.

SELECTION OF CITATIONS
SEARCH DETAIL
...