Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 61
Filter
1.
PhytoKeys ; 243: 231-248, 2024.
Article in English | MEDLINE | ID: mdl-38974888

ABSTRACT

Paraphlomisqingyuanensis and P.baiwanensis (Lamiaceae), two new species from the limestone area in Guangdong Province, China, are described. Morphologically, both species belong to P.ser.Subcoriaceae C.Y. Wu & H.W. Li. A close relationship between the two new and P.subcoriacea was revealed by molecular phylogenetic analyses based on ETS and ITS. Further morphological and population genetic evidence indicated that they are distinct species in Paraphlomis. According to the IUCN Red List Categories and Criteria, P.qingyuanensis and P.baiwanensis were assessed as Endangered (EN) and Deficient (DD), respectively.

2.
Chem Sci ; 15(25): 9756-9774, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38939132

ABSTRACT

G-quadruplexes (G4s) are atypical nucleic acid structures involved in basic human biological processes and are regulated by small molecules. To date, pyridostatin and its derivatives [e.g., PyPDS (4-(2-aminoethoxy)-N 2,N 6-bis(4-(2-(pyrrolidin-1-yl) ethoxy) quinolin-2-yl) pyridine-2,6-dicarboxamide)] are the most widely used G4-binding small molecules and considered to have the best G4 specificity, which provides a new option for the development of cisplatin-binding DNA. By combining PyPDS with cisplatin and its analogs, we synthesize three platinum complexes, named PyPDSplatins. We found that cisplatin with PyPDS (CP) exhibits stronger specificity for covalent binding to G4 domains even in the presence of large amounts of dsDNA compared with PyPDS either extracellularly or intracellularly. Multiomics analysis reveals that CP can effectively regulate G4 functions, directly damage G4 structures, activate multiple antitumor signaling pathways, including the typical cGAS-STING pathway and AIM2-ASC pathway, trigger a strong immune response and lead to potent antitumor effects. These findings reflect that cisplatin-conjugated specific G4 targeting groups have antitumor mechanisms different from those of classic cisplatin and provide new strategies for the antitumor immunity of metals.

3.
Proc Natl Acad Sci U S A ; 121(15): e2319525121, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38564637

ABSTRACT

The fine regulation of catalysts by the atomic-level removal of inactive atoms can promote the active site exposure for performance enhancement, whereas suffering from the difficulty in controllably removing atoms using current micro/nano-scale material fabrication technologies. Here, we developed a surface atom knockout method to promote the active site exposure in an alloy catalyst. Taking Cu3Pd alloy as an example, it refers to assemble a battery using Cu3Pd and Zn as cathode and anode, the charge process of which proceeds at about 1.1 V, equal to the theoretical potential difference between Cu2+/Cu and Zn2+/Zn, suggesting the electricity-driven dissolution of Cu atoms. The precise knockout of Cu atoms is confirmed by the linear relationship between the amount of the removed Cu atoms and the battery cumulative specific capacity, which is attributed to the inherent atom-electron-capacity correspondence. We observed the surface atom knockout process at different stages and studied the evolution of the chemical environment. The alloy catalyst achieves a higher current density for oxygen reduction reaction compared to the original alloy and Pt/C. This work provides an atomic fabrication method for material synthesis and regulation toward the wide applications in catalysis, energy, and others.

4.
Eur Geriatr Med ; 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38528284

ABSTRACT

BACKGROUND: In recent years, oral frailty was proposed as a new concept regarding dental and oral health in older adults. Poor oral health is linked to preserving general health and has become a geriatric public health problem that deeply affects healthy aging. While in present, evidence on the prevalence associated with oral frailty in older adults remains unclear. OBJECTIVE: To systematically evaluate the prevalence of oral frailty among older adults, stratified by relevant factors such as gender, source, study design, region, and the evaluation scales for oral frailty and provide an evidence-based foundation for healthcare professionals and policymakers to formulate relevant measures. METHODS: Ten electronic databases were systematically searched from inception to September 2023, including PubMed, Web of Science, Embase, PsycINFO, The Cochrane Library, CINAHL, China National Knowledge Infrastructure Database (CNKI), Chinese Biomedical Database (Sinomed), Weipu Database, and Wanfang database. Based on the Stata 15.0 software package, a random effect model was used to calculate the pooled prevalence of oral frailty among older adults. In addition, sensitivity analysis, subgroup analysis, and meta-regression were conducted based on different study characteristics to detect heterogeneity sources. Funnel plots, Begg's and Egger's tests were used to evaluate the publication bias. RESULTS: Eighteen studies with a total of 12,932 older adults were included for meta-analysis. The pooled prevalence of oral frailty and oral pre-frailty was 24% (95% CI: 20-28%) and 57% (95% CI: 52-61%) respectively. Based on different assessment tools of oral frailty, the pooled prevalence of oral frailty was higher when using the OFI-8 scale (44.1%; 95% CI: 35.4-52.8%) than the OFI-6 scale (18.3%; 95% CI: 15.8-20.8%) or OF checklist (22.1%; 95% CI: 17.4-26.7%). The prevalence of oral frailty was higher among older adults in females (23.8%; 95% CI: 18.4-29.2%), hospital settings (31%, 95% CI: 16.6-45.5%), cross-sectional design (26.7%, 95% CI: 19.2-34.2%), and China (45.9%, 95% CI: 34.4-57.3%). CONCLUSIONS: Our study showed that oral frailty was common among older adults and various characteristics may affect its prevalence. Thus, healthcare professionals and policymakers should take oral frailty seriously in clinical practice and program planning and develop more preventive measures for oral frailty among older adults.

5.
Sci Bull (Beijing) ; 69(5): 688-703, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38238207

ABSTRACT

Aqueous zinc-ion batteries (AZIBs) are attracting worldwide attention due to their multiple merits such as extreme safety, low cost, feasible assembly, and environmentally friendly enabled by water-based electrolytes. At present, AZIBs have experienced systematic advances in battery components including cathode, anode, and electrolyte, whereas research involving separators is insufficient. The separator is the crucial component of AZIBs through providing ion transport, forming contact with electrodes, serving as a container for electrolyte, and ensuring the efficient battery operation. Considering this great yet ignored significance, it is timely to present the latest advances in design strategies, the systematic classification and summary of separators. We summarize the separator optimization strategies mainly along two approaches including the modification of the frequently used glass fiber and the exploitation of new separators. The advantages and disadvantages of the two strategies are analyzed from the material types and the characteristics of different strategies. The effects and mechanisms of various materials on regulating the uniform migration and deposition of Zn2+, balancing the excessively concentrated nucleation points, inhibiting the growth of dendrites, and the occurrence of side reactions were discussed using confinement, electric field regulation, ion interaction force, desolvation, etc. Finally, potential directions for further improvement and development of AZIBs separators are proposed, aiming at providing helpful guidance for this booming field.

6.
Small ; 20(26): e2311205, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38267814

ABSTRACT

Urea, as one of the most sustainable organic solutes, denies the high salt consumption in commercial electrolytes with its peculiar solubility in water. The bi-mixture of urea-H2O shows the eutectic feature for increased attention in aqueous Zn-ion electrochemical energy storage (AZEES) technologies. While the state-of-the-art aqueous electrolyte recipes are still pursuing the high-concentrated salt dosage with limited urea adoption and single-anion selection category. Here, a dual-anion urea-based (DAU) electrolyte composed of dual-Zn salts and urea-H2O-induced solutions is reported, contributing to a stable electric double-layer construction and in situ organic/inorganic SEI formation. The optimized ZT2S0.5-20U electrolytes show a high initial Coulombic efficiency of 93.2% and durable Zn-ion storage ≈4000 h regarding Zn//Cu and Zn//Zn stripping/plating procedures. The assembled Zn//activated carbon full cells maintain ≈100% capacitance over 50 000 cycles at 4 A g-1 in coin cell and ≈98% capacitance over 20 000 cycles at 1 A g-1 in pouch cell setups. A 12 × 12 cm2 pouch cell assembly illustrates the practicality of AZEES devices by designing the cheap, antifreezing, and nonflammable DAU electrolyte system coupling proton donor-acceptor molecule and multi-anion selection criteria, exterminating the critical technical barriers in commercialization.

7.
iScience ; 26(12): 108470, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38077143

ABSTRACT

Sodium-ion batteries (SIBs) with abundant resource and high safety are attracting intensive interest from both research and industry communities in meeting the ever-increasing energy demands. Despite the rapid advance of SIBs, it is difficult yet necessary to enhance the cycling and rate performance at anode due to the sluggish kinetics of "fat" Na+. This review provides an overview of two-dimensional (2D) nanomaterials with a short ion diffusion pathway and a superior active sites exposure from the perspectives of synthesis, material chemistry, and structure engineering. We present the design principle of ideal carbon materials in SIBs. Moreover, we discuss the structure and chemistry regulations of different 2D materials to promote the efficient ion mass transfer and storage according to the different mechanisms of alloying, conversion, and insertion. Finally, we propose the remaining challenges and the possible solutions, in hope of guiding the future development of this booming field.

8.
Chem Commun (Camb) ; 59(89): 13348-13351, 2023 Nov 07.
Article in English | MEDLINE | ID: mdl-37872783

ABSTRACT

A TTPP probe was developed to distinguish G-quadruplexes (G4s) from other nucleic acid topologies through longer fluorescence lifetimes and higher quantum yields. In fluorescence lifetime imaging microscopy, TTPP enabled the visualization of cytoplasmic G4s in live cells, and showed the potential to detect cell apoptosis and ferroptosis by tracking cytoplasmic G4s.


Subject(s)
G-Quadruplexes , Nucleic Acids , Fluorescent Dyes , Cytoplasm , Cytosol
9.
Heliyon ; 9(7): e18224, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37539255

ABSTRACT

Background: Folic acid and zinc supplements have been used to treat male infertility, but their efficacy is still debated. Objective: To systematically evaluate the effects of folic acid and folic acid plus zinc supplements on sperm characteristics and pregnancy outcomes of infertile men. Methods: An online systematic search was performed using PubMed, Cochrane Library, and EMBASE databases from inception to August 1, 2022. The goal was to identify randomized controlled trials (RCTs) that used folic acid or folic acid plus zinc to improve sperm characteristics of infertile men. Data were extracted by two investigators who independently screened the literature and assessed for quality according to the criteria. The meta-analysis was performed using RevMan 5.4 software. Results: A total of 8 RCT studies involving 2168 patients were included. The results showed that compared with the controls, folic acid significantly increased sperm motility (MD, 3.63; 95% CI, -1.22 to 6.05; P = 0.003), but did not affect the sperm concentration (MD, 2.53; 95% CI, -1.68 to 6.73; P = 0.24) and sperm morphology (MD, -0.02; 95% CI, -0.29 to 0.24; P = 0.86) in infertile men. Folic acid plus zinc did not affect sperm concentration (MD, 1.87; 95% CI, -1.39 to 5.13; P = 0.26), motility (MD, 1.67; 95% CI, -1.29 to 4.63; P = 0.27), and morphology (MD, -0.05; 95% CI, -0.27 to 0.18; P = 0.69) in infertile men. Secondary results showed that compared with a placebo, folic acid alone had a higher rate of pregnancy in transferred embryos (35.6% vs. 20.4%, P = 0.082), but the difference was not significant. Folic acid plus zinc did not affect pregnancy outcomes. Conclusions: Based on the meta-analysis, no significant improvements in sperm characteristics with folic acid plus zinc supplements were seen. However, folic acid alone has demonstrated the potential to improve sperm motility and in vitro fertilization-intracytoplasmic sperm injection (IVF-ICSI) outcomes. This indicates that folic acid supplements alone may be a viable treatment option for male infertility.

10.
Angew Chem Int Ed Engl ; 62(36): e202305645, 2023 09 04.
Article in English | MEDLINE | ID: mdl-37464955

ABSTRACT

G-quadruplexes (G4s) have been revived as promising therapeutic targets with the development of immunotherapy, but the G4-mediated immune response remains unclear. We designed a novel class of G4-binding organic-platinum hybrids, L1 -cispt and L1 -transpt, with spatial matching for G4 binding and G4 DNA reactivity for binding site locking. The solution structure of L1 -transpt-MYT1L G4 demonstrated the effectiveness of the covalent binding and revealed the covalent binding-guided dynamic balance, accompanied by the destruction of the A5-T17 base pairs to achieve the covalent binding of the platinum unit to N7 of the G6 residue. Furthermore, L1 -cispt- and L1 -transpt-mediated genomic dysfunction could activate the retinoic acid-induced gene I (RIG-I) pathway and induce immunogenic cell death (ICD). The use of L1 -cispt/L1 -transpt-treated dying cells as therapeutic vaccines stimulated a robust immune response and effectively inhibited tumor growth in vivo. Our findings highlight the importance of the rational combination of specific spatial recognition and covalent locking in G4-trageting drug design and their potential in immunotherapy.


Subject(s)
G-Quadruplexes , Neoplasms , Platinum , Binding Sites , Promoter Regions, Genetic , Immunotherapy , Ligands , Neoplasms/drug therapy
11.
Front Oncol ; 13: 1162983, 2023.
Article in English | MEDLINE | ID: mdl-37091137

ABSTRACT

Background: Among primary brain tumors, gliomas are associated with a poor prognosis and a median survival that varies depending on the tumor grade and subtype. As the most malignant form of glioma, glioblastoma (GBM) constitutes a significant health concern. Alteration in granulin(GRN) has been proved to be accountable for several diseases. However, the relationship between GRN and GBM remains unclear. We evaluated the role of GRN in GBM through The Cancer Genome Atlas (TCGA) database. Methods: First, we assessed the relationship between GRN and GBM through the GEPIA database. Next, the relationship between GRN and GBM prognosis was analyzed by logistic regression and multivariate cox methods. Using CIBERSORT and the GEPIA correlation module, we also investigated the link between GRN and immune infiltrates in cancer. Using the TCGA data, a gene set enrichment analysis (GSEA) was performed. We also employed Tumor Immune Estimation Resource (TIMER) to examine the data set of GRN expression and immune infiltration level in GBM and investigate the cumulative survival in GBM. We also validated tissues from GBM patients by Western blotting, RT-qPCR, and immunohistochemistry. Results: Increased GRN expression was shown to have a significant relationship to tumor grade in a univariate study utilizing logistic regression. Furthermore, multivariate analysis disclosed that GRN expression down-regulation is an independent predictive factor for a favorable outcome. GRN expression level positively correlates with the number of CD4+ T cells, neutrophils, macrophages, and dendritic cells (DCs) that infiltrate a GBM. The GSEA also found that the high GRN expression phenotype pathway was enriched for genes involved in immune response molecular mediator production, lymphocyte-mediated immunity, cytokine-mediated signaling pathway, leukocyte proliferation, cell chemotaxis, and CD4+ alpha beta T cell activation. Differentially enriched pathways in the Kyoto Encyclopedia of Genes and Genomes (KEGG) include lysosome, apoptosis, primary immunodeficiency, chemokine signaling pathway, natural killer cell-mediated cytotoxicity, and B cell receptor signaling pathway. Validated result showed that GRN was upregulated in GBM tissues. These results suggested that GRN was a potential indicator for the status of GBM. Conclusion: GRN is a prognostic biomarker and correlated with immune infiltrates in GBM.

12.
Zhongguo Zhong Yao Za Zhi ; 48(2): 465-471, 2023 Jan.
Article in Chinese | MEDLINE | ID: mdl-36725236

ABSTRACT

The present study observed the regulatory effect of total flavonoids of Ziziphora clinopodioides on autophagy and the phosphatidylinositol 3-kinase(PI3K)/protein kinase B(Akt)/mammalian target of rapamycin(mTOR) signaling pathways in ApoE~(-/-) mice and explored the mechanism of total flavonoids of Z. clinopodioides against atherosclerosis(AS). ApoE~(-/-) mice were fed on a high-fat diet for eight weeks to induce an AS model. The model mice were randomly divided into a model group, a positive control group, and low-, medium-and high-dose groups of total flavonoids of Z. clinopodioides, while C57BL/6J mice fed on a common diet were assigned to the blank group. The serum and aorta samples were collected after intragastric administration for 12 weeks, and the serum levels of total cholesterol(TC), triglyceride(TG), low density lipoprotein-cholesterol(LDL-C), and high density lipoprotein-cholesterol(HDL-C) were detected by an automatic biochemical analyzer. The serum expression levels of intercellular adhesion molecule-1(ICAM-1), vascular cell adhesion molecule-1(VCAM-1), matrix metalloproteinase-2(MMP-2), and matrix metalloprotei-nase-9(MMP-9) were detected by enzyme-linked immunosorbent assay(ELISA). Oil red O staining was used to observe the aortic plaque area in mice. Hematoxylin-eosin(HE) staining was used to observe the aortic plaque and pathological changes in mice. The expression of P62 and LC3 in the aorta was detected by the immunofluorescence method. The protein expression of LC3Ⅱ/Ⅰ, Beclin-1, P62, p-PI3K, p-Akt, and p-mTOR in the aorta of mice was detected by Western blot. The results showed that compared with the blank group, the serum levels of TC, TG, LDL-C, ICAM-1, VCAM-1, MMP-2 and MMP-9 in the model group were significantly increased(P<0.01 or P<0.05), the content of HDL-C was decreased(P<0.05), intra-aortic plaque area was enlarged(P<0.01), the expression of LC3 in the aorta was significantly down-regulated, P62 expression was up-regulated(P<0.01 or P<0.05), the expressions of LC3Ⅱ/Ⅰ and Beclin-1 in the aortic lysate were significantly down-regulated, and the expressions of p-PI3K, p-Akt, p-mTOR and P62 were significantly increased(P<0.01). The medium-and high-dose groups of total flavonoids of Z. clinopodioides could reduce the serum levels of TC, TG, LDL-C, ICAM-1, VCAM-1, MMP-2, and MMP-9 in AS model mice(P<0.01 or P<0.05), and increase the content of HDL-C(P<0.01 or P<0.05). The aortic plaque area of mice after middle and high doses of total flavonoids of Z. clinopodioides was significantly reduced(P<0.01), the content of foam cells decrease, and the narrowing of the lumen decreased. The total flavonoids of Z. clinopodioides significantly increased the expression of LC3 in the aorta and the expression of LC3Ⅱ/Ⅰ and Beclin-1 in the lysate, and decreased the expression of P62 in the aorta and the expression of p-PI3K, p-Akt, p-mTOR and P62 in the lysate(P<0.01 or P<0.05). The results showed that the total flavonoids of Z. clinopodioides could improve the content of blood lipids and inflammatory factors, and reduce the generation of foam cells and plaques in aortic tissue, and the mechanism may be related to the regulation of PI3K/Akt/mTOR signaling pathway.


Subject(s)
Atherosclerosis , Plaque, Atherosclerotic , Animals , Mice , Apolipoproteins E , Atherosclerosis/drug therapy , Atherosclerosis/genetics , Beclin-1 , Cholesterol, LDL , Intercellular Adhesion Molecule-1 , Matrix Metalloproteinase 2/genetics , Matrix Metalloproteinase 9/genetics , Mice, Inbred C57BL , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , TOR Serine-Threonine Kinases/genetics , Vascular Cell Adhesion Molecule-1/genetics
13.
Front Oncol ; 12: 942122, 2022.
Article in English | MEDLINE | ID: mdl-36237337

ABSTRACT

Background: Survival rates are usually used to evaluate the effect of cancer treatment and prevention. This study aims to analyze the 5-year relative survival of non-Hodgkin lymphoma (NHL) in United States using population-based cancer registry data. Methods: A period analysis was used to evaluate the improvement in long-term prognosis of patients with NHL from 2004 to 2018, and a generalized linear model was developed to predict the 5-year relative survival rates of patients during 2019-2023 based on data from the SEER database stratified by age, sex, race and subtype. Results: In this study, relative survival improved for all NHL, although the extent of improvement varied by sex, age group and lymphoma subtype. Survival improvement was also noted for NHL subtypes, although the extent varied, with marginal-zone lymphoma having the highest 5-year relative survival rate (92.5%) followed by follicular lymphoma (91.6%) and chronic lymphocytic leukemia/small lymphocytic lymphoma (87.3%). Across all subtypes, survival rates were slightly higher in females than in males. Survival rates are lower in the elderly than in the young. Furthermore, the study demonstrated that black patients had lower NHL survival rates than white patients. Survival rates for NHL were higher in rural areas than in urban areas. Patients with extra-nodal NHL had a higher survival rate than patients with nodal NHL. Conclusion: Overall, patient survival rates for NHL gradually improved during 2004-2018. The trend continues with a survival rate of 75.2% for the period 2019-2023. Analysis by NHL subtype and subgroups indicating that etiology and risk factors may differ by subtype. Identification of population-specific prevention strategies and treatments for each subtype can be aided by understanding these variations.

14.
J Am Chem Soc ; 144(26): 11878-11887, 2022 07 06.
Article in English | MEDLINE | ID: mdl-35749293

ABSTRACT

The nucleic acid G-quadruplex (G4) has emerged as a promising therapeutic target for a variety of diseases such as cancer and neurodegenerative disease. Among small-molecule G4-binders, pyridostatin (PDS) and its derivatives (e.g., PyPDS) exhibit high specificity to G4s, but the structural basis for their specific recognition of G4s remains unknown. Here, we presented two solution structures of PyPDS and PDS with a quadruplex-duplex hybrid. The structures indicate that the rigid aromatic rings of PyPDS/PDS linked by flexible amide bonds match adaptively with G-tetrad planes, enhancing π-π stacking and achieving specific recognition of G4s. The aliphatic amine side chains of PyPDS/PDS adjust conformation to interact with the phosphate backbone via hydrogen bonding and electrostatic interactions, increasing affinity for G4s. Moreover, the N-H of PyPDS/PDS amide bonds interacts with two O6s of G-tetrad guanines via hydrogen bonding, achieving a further increase in affinity for G4s, which is different from most G4 ligands. Our findings reveal from structural perspectives that the rational assembly of rigid and flexible structural units in a ligand can synergistically improve the selectivity and affinity for G4s through spatial selective and adaptive matching.


Subject(s)
G-Quadruplexes , Neurodegenerative Diseases , Amides , Aminoquinolines , DNA/chemistry , Humans , Ligands , Picolinic Acids
15.
Front Aging Neurosci ; 14: 1071377, 2022.
Article in English | MEDLINE | ID: mdl-36688168

ABSTRACT

Background and purpose: Stress hyperglycemia is common in critical and severe diseases. However, few studies have examined the association between stress hyperglycemia and the functional outcomes of patients with anterior circulation stroke, after mechanical thrombectomy (MT), in different diabetes status. This study therefore aimed to determine the relationship between stress hyperglycemia and the risk of adverse neurological functional outcomes in anterior circulation stroke patients with and without diabetes after MT. Methods: Data of 408 patients with acute anterior circulation stroke treated with MT through the green-channel treatment system for emergency stroke at the First Affiliated Hospital of Jinan University between January 2016 and December 2020 were reviewed retrospectively. The stress hyperglycemia ratio (SHR) was calculated as fasting plasma glucose (mmol/L) divided by glycosylated hemoglobin (%). The patients were stratified into four groups by quartiles of SHR (Q1-Q4). The primary outcome was an excellent (nondisabled) functional outcome at 3 months after admission (modified Rankin Scale score of 0-1). The relationship between stress hyperglycemia and neurological outcome after stroke was assessed using multivariate logistic regression. Results: After adjusting for potential confounders, compared with patients in Q1, those in Q4 were less likely to have an excellent outcome at 3 months (odds ratio [OR], 0.32, 95% confidence interval [CI], 0.14-0.66, p = 0.003), a good outcome at 3 months (OR, 0.41, 95% CI, 0.20-0.84, p = 0.020), and major neurological improvement (OR, 0.38, 95% CI, 0.19-0.73, p = 0.004). Severe stress hyperglycemia increased risks of 3-months all-cause mortality (OR, 2.82, 95% CI, 1.09-8.29, p = 0.041) and ICH (OR, 2.54, 95% CI, 1.21-5.50, p = 0.015). Conclusion: Stress hyperglycemia was associated with a reduced rate of excellent neurological outcomes, and increased mortality and ICH risks in patients with anterior circulation stroke after MT regardless of diabetes status.

16.
Brain Behav ; 11(8): e02165, 2021 08.
Article in English | MEDLINE | ID: mdl-34291608

ABSTRACT

N-methyl-D-aspartate (NMDA) receptors mediate excitatory neurotransmission in the nervous system and are preferentially inhibited by general anesthetics such as sevoflurane. Spontaneous movement is a common complication during sevoflurane anesthesia induction and seriously affects operations. In this study, we investigated the relationship between NMDA polymorphisms and spontaneous movement during sevoflurane induction. This prospective clinical study enrolled 393 patients undergoing sevoflurane anesthesia as part of their surgical routine. In the GRIN1, GRIN2A, and GRIN2B genes, 13 polymorphisms that form a heteromeric complex as part of the NMDA receptor were selected using Haploview and genotyped using matrix-assisted laser desorption ionization-time of flight mass spectrometry MassARRAY. Both RNAfold and Genotype-Tissue Expression portals were used to identify gene expression profiles. Our data showed that 35.8% of subjects exhibited spontaneous movement. The GRIN2A rs12918566 polymorphism was associated with spontaneous movement during sevoflurane induction. A logistic regression analysis of additive, dominant, and recessive models indicated a significant association (odds ratio [OR] (95% confidence limit [CI]): 0.58 (0.42-0.80), p = .00086; OR (95% CI): 0.51 (0.31-0.84), p = .0075, and OR (95% CI): 0.47 (0.27-0.81), p = .0060, respectively). After false discovery rate (FDR) correction, the additive model was still significant with a PFDR =0.010. Bioinformatics demonstrated that the rs12918566 genomic variation affected GRIN2A expression in brain tissue. We also revealed that GRIN2A rs12918566 was significantly associated with spontaneous movement during sevoflurane induction. We believe the NMDA receptor plays an important role in regulating the anesthetic effects of sevoflurane.


Subject(s)
Anesthesia , Polymorphism, Genetic , Genotype , Humans , Prospective Studies , Sevoflurane
17.
Angew Chem Int Ed Engl ; 60(38): 20833-20839, 2021 09 13.
Article in English | MEDLINE | ID: mdl-34288320

ABSTRACT

The sequence-dependent DNA secondary structures possess structure polymorphism. To date, studies on regulated ligands mainly focus on individual DNA secondary topologies, while lack focus on quadruplex-duplex hybrids (QDHs). Here, we design an organic-metal hybrid ligand L1 Pt(dien), which matches and selectively binds one type of QDHs with lateral duplex stem-loop (QLDH) with high affinity, while shows poor affinity for other QDHs and individual G4 or duplex DNA. The solution structure of QLDH MYT1L-L1 Pt(dien) complex was determined by NMR. The structure reveals that L1 Pt(dien) presents a chair-type conformation, whose large aromatic "chair surface" intercalates into the G-quadruplex-duplex interface via π-π stacking and "backrest" platinum unit interacts with duplex region through hydrogen bonding and electrostatic interactions, showing a highly matched lock-key binding mode. Our work provided guidance for spatial matching design of selectively targeting ligands to QDH structures.

18.
Inorg Chem ; 60(3): 1506-1512, 2021 Feb 01.
Article in English | MEDLINE | ID: mdl-33474930

ABSTRACT

Krypton (Kr) and xenon (Xe) are nowadays widely applied in technical and industrial fields. Separating and collecting highly pure Xe from nuclear facilities are necessary and urgent. However, the technology is limited due to the inert nature of Xe and other interferential factors. In this work, a calcium-based metal-organic framework, Ca-SINAP-1, which comprises a three-dimensional microporous framework with a suitable pore width, was researched for xenon and krypton separation through both experimental and theoretical methods. Ca-SINAP-1, synthesized in solvothermal and gamma ray conditions, features accessible open-metal sites, exhibits a high Xe/Kr selectivity of 10.32, and owns a Xe adsorption capacity of 2.87 mmol/g at room temperature (1.0 bar). Particularly, its excellent chemical stability (from pH 2 to 13) and thermal stability (up to 550 °C), as well as radiation-resistance (up to 400 kGy ß irradiations), render this material a promising candidate for radioactive inert gases treatment.

19.
Brain Res Bull ; 169: 18-24, 2021 04.
Article in English | MEDLINE | ID: mdl-33400956

ABSTRACT

Resveratrol, a naturally occurring stilbene found in red wine, is known to modulate the activity of several types of ion channels and membrane receptors, including Ca2+, K+, and Na+ ion channels. However, little is known about the effects of resveratrol on some important receptors, such as glycine receptors and GABAA receptors, in the central nervous system (CNS). In the present study, the effects of resveratrol on glycine receptor or GABAA receptor-mediated currents in cultured rat inferior colliculus (IC) and auditory cortex (AC) neurons were studied using whole-cell voltage-clamp recordings. Resveratrol itself did not evoke any currents in IC neurons but it reversibly decreased the amplitude of glycine-induced current (IGly) in a concentration-dependent manner. Resveratrol did not change the reversal potential of IGly but it shifted the concentration-response relationship to the right without changing the Hill coefficient and with decreasing the maximum response of IGly. Interestingly, resveratrol inhibited the amplitude of IGly but not that of GABA-induced current (IGABA) in AC neurons. More importantly, resveratrol inhibited GlyR-mediated but not GABAAR-mediated inhibitory postsynaptic currents in IC neurons using brain slice recordings. Together, these results demonstrate that resveratrol noncompetitively inhibits IGly in auditory neurons by decreasing the affinity of glycine to its receptor. These findings suggest that the native glycine receptors but not GABAA receptors in central neurons are targets of resveratrol during clinical administrations.


Subject(s)
Inferior Colliculi/drug effects , Neurons/drug effects , Receptors, Glycine/metabolism , Resveratrol/pharmacology , Synaptic Transmission/drug effects , Animals , Inferior Colliculi/metabolism , Neurons/metabolism , Patch-Clamp Techniques , Rats
20.
Ann Transl Med ; 9(22): 1704, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34988213

ABSTRACT

OBJECTIVE: The purpose of this review is to clarify the potential roles of forkhead box transcription factor M1 (FoxM1) in the occurrence and progression of breast cancer, as well as the predictive value of FoxM1 as a prognostic biomarker and potential therapeutic target for breast cancer. BACKGROUND: Breast cancer, well-known as a molecularly heterogeneous cancer, is still one of the most frequently diagnosed malignant tumors among females worldwide. Tumor recurrence and metastasis are the central causes of high mortality in breast cancer patients. Many factors contribute to the occurrence and progression of breast cancer, including FoxM1. FoxM1, widely regarded as a classic proliferation-related transcription factor, plays pivotal roles in the occurrence, proliferation, invasion, migration, drug resistance, and epithelial-mesenchymal transition (EMT) processes of multiple human tumors including breast cancer. METHODS: The PubMed database was searched for articles published in English from February 2008 to May 2021 using related keywords such as "forkhead box transcription factor M1", "human breast cancer", "FoxM1", and "human tumor". About 90 research papers and reports written in English were identified, most of which were published after 2015. These papers mainly concentrated on the functions of FoxM1 in the occurrence, development, drug resistance, and treatment of human breast cancer. CONCLUSIONS: Considering that the abnormal expression of FoxM1 plays a significant role in the proliferation, invasion, metastasis, and chemotherapy drug resistance of breast cancer, and its overexpression is closely correlated with the unfavorable clinicopathological characteristics of breast tumor patients, it is considerably important to comprehend the regulatory mechanism of FoxM1 in breast cancer. This will provide strong evidence for FoxM1 as a potential biomarker for the targeted treatment and prognostic evaluation of breast cancer patients.

SELECTION OF CITATIONS
SEARCH DETAIL
...