Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 136(43): 15386-93, 2014 Oct 29.
Article in English | MEDLINE | ID: mdl-25314008

ABSTRACT

We have synthesized a novel europium bismuth sulfofluoride, Eu3Bi2S4F4, by solid-state reactions in sealed evacuated quartz ampules. The compound crystallizes in a tetragonal lattice (space group I4/mmm, a = 4.0771(1) Å, c = 32.4330(6) Å, and Z = 2), in which CaF2-type Eu3F4 layers and NaCl-like BiS2 bilayers stack alternately along the crystallographic c axis. There are two crystallographically distinct Eu sites, Eu(1) and Eu(2) at the Wyckoff positions 4e and 2a, respectively. Our bond valence sum calculation, based on the refined structural data, indicates that Eu(1) is essentially divalent, while Eu(2) has an average valence of ∼ +2.64(5). This anomalous Eu valence state is further confirmed and supported, respectively, by Mössbauer and magnetization measurements. The Eu(3+) components donate electrons into the conduction bands that are mainly composed of Bi 6px and 6py states. Consequently, the material itself shows metallic conduction and superconducts at 1.5 K without extrinsic chemical doping.

2.
J Am Chem Soc ; 136(4): 1284-7, 2014 Jan 29.
Article in English | MEDLINE | ID: mdl-24428401

ABSTRACT

Superconductivity in low-dimensional compounds has long attracted much interest. Here we report superconductivity in a low-dimensional ternary telluride Ta4Pd3Te16 in which the repeating layers contain edge-sharing octahedrally coordinated PdTe2 chains along the crystallographic b axis. Measurements of electrical resistivity, magnetic susceptibility and specific heat on the Ta4Pd3Te16 crystals, grown via a self-flux method, consistently demonstrate bulk superconductivity at 4.6 K. Further analyses of the data indicate significant electron-electron interaction, which allows electronic Cooper pairing in the present system.

3.
J Am Chem Soc ; 134(31): 12893-6, 2012 Aug 08.
Article in English | MEDLINE | ID: mdl-22823744

ABSTRACT

We have synthesized a new oxypnictide, Ba2Ti2Fe2As4O, via a solid-state reaction under a vacuum. The compound crystallizes in a body-centered tetragonal lattice, which can be viewed as an intergrowth of BaFe2As2 and BaTi2As2O, thus containing Fe2As2 layers and Ti2O sheets. Bulk superconductivity at 21 K is observed after annealing the as-prepared sample at 773 K for 40 h. In addition, an anomaly in resistivity and magnetic susceptibility around 125 K is revealed, suggesting a charge- or spin-density wave transition in the Ti sublattice.

4.
Langmuir ; 21(15): 6995-7002, 2005 Jul 19.
Article in English | MEDLINE | ID: mdl-16008414

ABSTRACT

A titania layer with ordered nanostructures is expected to be of high photocatalytic activity due mainly to its high specific surface area. In the present work, large-area films with ordered titania nanorods were deposited on titanium substrates through a solution approach. The nanorods, with the phase composition of a mixture of anatase and rutile, grew on top of a condensed anatase interlayer along mainly the rutile [001]-axis. The photocatalytic activity was evaluated by decomposing rhodamine B in water and compared with the general sol-gel derived titania films and a commercial DP-25 titania coating. It is found that the as-deposited titania nanorods exhibited extremely high initial photocatalytic activity but declined to a poor value after the consumption of beneficial oxidative peroxo complexes coordinated to Ti(IV). A subsequent thermal treatment eliminated such complexes but at the same time improved the crystallinity of the titania nanorods. The photocatalytic activity of the thermally treated titania nanorods was stable and significantly higher than that of the sol-gel derived film and commercial DP-25 coating.

SELECTION OF CITATIONS
SEARCH DETAIL
...