Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Main subject
Publication year range
1.
J Phys Chem Lett ; 15(24): 6266-6271, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38844414

ABSTRACT

Traditional semiconductors are known to exhibit excellent electrical properties but oversized lattice thermal conductivities, thus limiting their thermoelectric performance. Herein, we have discovered a low-energy allotrope of those traditional semiconductors. Compared with the wurtzite structure, the lattice thermal conductivity is reduced by more than five times in the haeckelite structure. This is attributed to the softening of acoustic phonon modes and concurrently enhanced anharmonicity in the haeckelite structure. Benefiting from the suppressed lattice thermal conductivity while retaining the excellent electrical properties of wurtzite structure, haeckelite compounds have been proven to be a novel category of high-performance thermoelectric materials. As an excellent representative, haeckelite CdTe exhibits a peak figure of merit approaching 1.3 at n-type doping and high temperature, which experiences a 3-fold improvement compared with its wurtzite counterpart. This work provides an alternative pathway of engineering the lattice thermal conductivities of traditional semiconductors toward superior thermoelectric properties.

2.
Nanoscale ; 16(17): 8447-8454, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38577736

ABSTRACT

Quantum dots are widely recognized for their advantageous light-emitting properties. Their excitonic fine structure along with the high quantum yields offers a wide range of possibilities for technological applications. However, especially for the case of colloidal QDs, there are still characteristics and properties which are not adequately controlled and downgrade their performance for applications which go far beyond the simple light emission. Such a challenging task is the ability to manipulate the energetic ordering of exciton and biexciton emission and subsequently control phenomena such as Auger recombination, optical gain and photon entanglement. In the present work we attempt to engineer this ordering for the case of InP QDs embedded in polymer matrix, by means of their size, the dielectric confinement and external electric fields. We employ well tested, state of the art theoretical methods, in order to explore the conditions under which the exciton-biexciton configuration creates the desired conditions either for optical gain or photon entanglement. Indeed, this appears to be feasible for QDs with small diameters (1 nm, 1.5 nm) embedded in a host material with high dielectric constant and additional external electric fields. These findings offer a new design principle which might be complementary to the well-established type II core-shell QDs approach for achieving electron-hole separation.

3.
Nano Lett ; 24(10): 3237-3242, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38437641

ABSTRACT

Traditional semiconductor quantum dots of groups II-VI are key ingredients of next-generation display technology. Yet, the majority of them contain toxic heavy-metal elements, thus calling for alternative light-emitting materials. Herein, we have explored three novel categories of multicomponent compounds, namely, tetragonal II-III2-VI4 porous ternary compounds, cubic I2-II3-VI4 ternary compounds, and cubic I-II-III3-V4 quaternary compounds. This is achieved by judicious introduction of a "super atom" perspective and concurrently varying the solid-state lattice packing of involved super atoms or the population of surrounding counter cations. Based on first-principles calculations of 392 candidate materials with designed crystal structures, 53 highly stable materials have been screened. Strikingly, 34 of them are direct-bandgap semiconductors with emitting wavelengths covering the near-infrared and visible-light regions. This work provides a comprehensive database of highly efficient light-emitting materials, which may be of interest for a broad field of optoelectronic applications.

4.
Angew Chem Int Ed Engl ; 63(5): e202315087, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38087471

ABSTRACT

The reaction rate bottleneck during interconversion between insulating S8 (S) and Li2 S fundamentally leads to incomplete conversion and restricted lifespan of Li-S battery, especially under high S loading and lean electrolyte conditions. Herein, we demonstrate a new catalytic chemistry: soluble semiquinone, 2-tertbutyl-semianthraquinone lithium (Li+ TBAQ⋅- ), as both e- /Li+ donor and acceptor for simultaneous S reduction and Li2 S oxidation. The efficient activation of S and Li2 S by Li+ TBAQ⋅- in the initial discharging/charging state maximizes the amount of soluble lithium polysulfide, thereby substantially improve the rate of solid-liquid-solid reaction by promoting long-range electron transfer. With in situ Raman spectra and theoretical calculations, we reveal that the activation of S/Li2 S is the rate-limiting step for effective S utilization under high S loading and low E/S ratio. Beyond that, the S activation ratio is firstly proposed as an accurate indicator to quantitatively evaluate the reaction rate. As a result, the Li-S batteries with Li+ TBAQ⋅- deliver superior cycling performance and over 5 times higher S utilization ratio at high S loading of 7.0 mg cm-2 and a current rate of 1 C compared to those without Li+ TBAQ⋅- . We hope this study contributes to the fundamental understanding of S redox chemical and inspires the design of efficient catalysis for advanced Li-S batteries.

5.
Nano Lett ; 23(10): 4648-4653, 2023 May 24.
Article in English | MEDLINE | ID: mdl-37167231

ABSTRACT

Colloidal quantum dots (QDs) of groups II-VI and III-V are key ingredients for next-generation light-emitting devices. Yet, many of them are heavy-element-containing or indirect bandgap, causing limited choice of environmental friendly efficient light-emitting materials. Herein, we resolve this issue by exploring potential derivatives of the parent semiconductors, thus expanding the material space. The key to success is the discovery of a principle for designing those materials, namely, cation stabilizing charged cluster network. Guided by this principle, three novel categories of cubic materials have been predicted, namely, porous binary compounds, I-II-VI ternary compounds, and I-II-III-V quaternary compounds. Using first-principles calculations, 65 realistic highly stable candidate materials have been theoretically screened. Their structural and compositional diversity enables a wide tunability of emitting wavelength from far-infrared to ultraviolet region. This work enriches the family of tetrahedral semiconductors and derivatives, which may be of interest for a broad field of optoelectronic applications.

6.
Nano Lett ; 23(8): 3239-3244, 2023 Apr 26.
Article in English | MEDLINE | ID: mdl-37022343

ABSTRACT

Environmentally friendly colloidal quantum dots (QDs) of groups III-V are in high demand for next-generation high-performance light-emitting devices for display and lighting, yet many of them (e.g., GaP) suffer from inefficient band-edge emission due to the indirect bandgap nature of their parent materials. Herein, we theoretically demonstrate that efficient band-edge emission can be activated at a critical tensile strain γc enabled by the capping shell when forming a core/shell architecture. Before γc is reached, the emission edge is dominated by dense low-intensity exciton states with a vanishing oscillator strength and a long radiative lifetime. After γc is crossed, the emission edge is dominated by high-intensity bright exciton states with a large oscillator strength and a radiative lifetime that is shorter by a few orders of magnitude. This work provides a novel strategy for realizing efficient band-edge emission of indirect semiconductor QDs via shell engineering, which is potentially implemented employing the well-established colloidal QD synthesis technique.

7.
Nano Lett ; 22(12): 4912-4918, 2022 Jun 22.
Article in English | MEDLINE | ID: mdl-35639504

ABSTRACT

A heterojunction with type-II band alignment has long been considered as a prerequisite to realize charge transfer (CT) excitons which are highly appealing for exploration of quantum many-body phenomena, such as excitonic Bose-Einstein condensation and superfluidity. Herein, we have shown CT excitons can be activated via twisting in epitaxially fused heterodimer quantum dot (QD) molecules with quasi type-II band alignment, and even in QD homodimer molecules, therefore breaking the constraint of band alignment. The enabling power of twisting has been revealed. It modulates the orbital spatial localization toward charge separation that is mandatory for CT excitons. Meanwhile, it manifests an effective band offset that counterbalances the distinct many-body effects felt by excitons of different nature, thus ensuring the successful generation of CT excitons. The present work extends the realm of twistroincs into zero-dimensional materials and opens a novel pathway of manipulating the properties of QD materials and closely related molecular systems.

8.
Nano Lett ; 22(9): 3604-3611, 2022 05 11.
Article in English | MEDLINE | ID: mdl-35499490

ABSTRACT

Environmentally friendly blue-emitting ZnSe quantum dots (QDs) are in high demand for next-generation light-emitting devices. Yet, they suffer longstanding optical instability issues under aerobic conditions. Herein, we have demonstrated the existence of oxidization or hydroxylation on the QD surface when QDs are subjected to oxygen exposure, which potentially introduces highly localized in-gap states. Those states result in a dense number of surface-related, weak-intensity "dark" exciton states at the emission edge. Remarkably, there exists a critical diameter (Dc ≈ 8.5 nm) at which the deepest trap level reaches resonance with the highest occupied molecular orbital state. Beyond this critical diameter, the effects of those trap states are minimized, and the emission edge is dominated by high-intensity, bulk-to-bulk-like "bright" exciton states. The present work provides a novel strategy for designing highly stable QD emitters via size engineering, which are broadly applicable to other closely related QD systems.


Subject(s)
Quantum Dots
9.
J Phys Chem Lett ; 13(3): 740-746, 2022 Jan 27.
Article in English | MEDLINE | ID: mdl-35029120

ABSTRACT

Surface Van Hove singularity (SVHS) triggers exciting physical phenomena distinct from the bulk. Herein, we explore the potential role of SVHS in catalysis for both CO oxidation and the hydrogen evolution reaction (HER) using the graphene/Ca2N (Gra/Ca2N) heterojunction and Pt2HgSe3 (001) surface as prototype systems. It is demonstrated that both systems with SVHS could serve as an electron bath to promote O2 adsorption and subsequent CO oxidation with low energy barriers of 0.2-0.6 eV for the Gra/Ca2N and Pt2HgSe3 (001) surface and similarly facilitate the HER with near-zero hydrogen adsorption free energy. Importantly, the catalytically active sites associated with SVHS are well-defined and distributed over the whole surface plane, and further, the chemical reactivity of SVHS can also be tuned easily via adjusting its position with respect to EF. Our study demonstrates the enabling power of SVHS and provides novel physical insights into the promising potential role of VHS in designing high-efficiency catalysts.

10.
Nano Lett ; 21(17): 7252-7260, 2021 Sep 08.
Article in English | MEDLINE | ID: mdl-34428068

ABSTRACT

Blue-emitting heavy-metal free QDs simultaneously exhibiting photoluminescence quantum yield close to unity and narrow emission line widths are essential for next-generation electroluminescence displays, yet their synthesis is highly challenging. Herein, we develop the synthesis of blue-emitting QDs by growing a thin shell of ZnS on ZnSe cores with their size larger than bulk Bohr diameter. The bulk-like size of ZnSe cores enables the emission to locate in the blue region with a narrow emission width close to its intrinsic peak width. The obtained bulk-like ZnSe/ZnS core/shell QDs display high quantum yield of 95% and extremely narrow emission width of ∼9.6 nm. Moreover, the bulk-like size of ZnSe cores reduces the energy level difference between QDs and adjacent layers in LEDs and improves charge transport. The LEDs fabricated with these high-quality QDs show bright pure blue emission with an external quantum efficiency of 12.2% and a relatively long operating lifetime.

11.
J Phys Chem Lett ; 11(3): 960-967, 2020 Feb 06.
Article in English | MEDLINE | ID: mdl-31957438

ABSTRACT

InP quantum dots (QDs) are considered as one of the most promising candidates of Cd- or Pb-based QDs in the applications of display and lighting. However, the performances of blue InP QDs and the corresponding light emitting devices (LEDs) are far inferior to those of their red and green counterparts, which strongly limits the development of InP QD based LEDs (QLEDs) technology. Here, high quantum yield (∼81%) and large size (∼7.0 ± 0.9 nm) InP/GaP/ZnS//ZnS QDs with a thick shell have been successfully synthesized by a shell engineering approach, and the corresponding QLEDs exhibit a record brightness and external quantum efficiency of 3120 cd·m-2 and 1.01%, respectively. Large-scale density functional theory calculations on thousands-of-atoms QDs indicate that thicker-shell ones favor a more balanced carrier injection in the QD film and simultaneously suppress the FRET between closely packed QDs, which collectively contribute to the improved blue device performances.

12.
Nanoscale Res Lett ; 14(1): 307, 2019 Sep 09.
Article in English | MEDLINE | ID: mdl-31502083

ABSTRACT

Using first-principle calculations within density functional theory, we investigate the electronic property and stability of substitutionally doped 2D GeP3 monolayer with dopants from group III to VI. The conducting properties are found to be dramatically modified by both the doping sites and the number of valence electrons of dopants. Specifically, substitution on Ge site exhibits metal-semiconductor oscillations as a function of the number of valence electrons of dopants, while such oscillations are totally reversed when substitution on P site. Moreover, we also study the case of co-doping in GeP3, showing that co-doping can produce a logical "AND" phenomenon, that is, the conducting properties of co-doped GeP3 can be deduced via a simple logical relation according to the results of single doping. Finally, we investigate the formation energy of dopants and find that the electron-hole and hole-hole co-doped systems are much more energetically favorable due to the Coulomb attraction. Our findings not only present a comprehensive understanding of 2D doping phenomenon, but also propose an intriguing route to tune the electronic properties of 2D binary semiconductors.

13.
Phys Chem Chem Phys ; 21(1): 275-280, 2018 Dec 19.
Article in English | MEDLINE | ID: mdl-30520926

ABSTRACT

GeP3 is a new kind of IV-V two dimensional material that has been predicted very recently. Here, we have theoretically explored the electronic properties of GeP3 nanoribbons (NRs) by employing first-principles calculations within density functional theory. We find that, unlike other monolayer materials, the bandgaps of armchair GeP3 NRs exhibit a strong even-odd oscillation as a function of nanoribbon width and such oscillations can remain intensive even when the width reaches up to 9 nm. The underlying physics of such oscillation originates from both the parity-dependent geometric symmetry and quantum size effects. Furthermore, we also find that suitable chemical decoration at the nanoribbon edge, e.g., by passivating hydrogen atoms, effectively tunes the indirect band gap into a direct one, making these nanoribbons potentially important for photovoltaic applications. Based on the strong bandgap oscillating nature of GeP3 NRs, we have conceptually designed a lateral homogenous heterojunction, constructed by GeP3 nanoribbons with different widths, which has shown a type-II band alignment beneficial for photo-detector applications.

14.
Sci Rep ; 7(1): 9366, 2017 08 24.
Article in English | MEDLINE | ID: mdl-28839220

ABSTRACT

Electron-hole exchange interaction in semiconductor quantum dots (QDs) splits the band-edge exciton manifold into optically active ("bright") and passive ("dark") states, leading to a complicated exciton fine structure. In the present work, we resolve by atomistic million-atom many-body pseudopotential calculations the exciton fine structure in colloidal polar and nonpolar zinc sulfide (ZnS) nanorods (NRs). We explore that polar NRs with high symmetry exhibit vanishing fine structure splitting (FSS), and are therefore ideal sources of entangled photon pairs. In contrast, nonpolar NRs grown along [Formula: see text] and [Formula: see text] directions with reduced symmetries have significant FSS, which can even reach up to a few mili electron volts. However, such large FSS can be effectively minimized to a few micro electron volts, or even less, by a simple morphology control.

15.
J Chem Phys ; 142(11): 114305, 2015 Mar 21.
Article in English | MEDLINE | ID: mdl-25796247

ABSTRACT

By means of atomistic empirical pseudopotentials combined with a configuration interaction approach, we have studied the optical properties of wurtzite ZnS quantum dots in the presence of strong quantum confinement effects as a function of pressure. We find the pressure coefficients of quantum dots to be highly size-dependent and reduced by as much as 23% in comparison to the bulk value of 63 meV/GPa obtained from density functional theory calculations. The many-body excitonic effects on the quantum dot pressure coefficients are found to be marginal. The absolute gap deformation potential of quantum dots originates mainly from the energy change of the lowest unoccupied molecular orbital state. Finally, we find that the exciton spin-splitting increases nearly linearly as a function of applied pressure.

16.
Phys Chem Chem Phys ; 17(2): 1197-203, 2015 Jan 14.
Article in English | MEDLINE | ID: mdl-25418832

ABSTRACT

Using the atomistic pseudopotential method complemented by configuration interaction calculations, we have studied the electronic and optical properties of ZnO nanowires (NWs) in the presence of quantum confinement effects. Our results indicate that the near-band-edge exciton experiences a crossover from an in-plane polarized A-exciton (for D≥ 3 nm) to an out-of-plane polarized C-exciton (for D < 3 nm) due to quantum confinement. This transition leads to a non-monotonic variation of Stokes shift, exhibiting a maximum value around the critical diameter of 3 nm. The observed behavior is analyzed by a stepwise inclusion of correlation effects, leading to a comprehensive description of the excitonic fine structure.

SELECTION OF CITATIONS
SEARCH DETAIL
...