Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Respir Res ; 25(1): 2, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38172893

ABSTRACT

BACKGROUND: Accurately distinguishing between pulmonary infection and colonization in patients with Acinetobacter baumannii is of utmost importance to optimize treatment and prevent antibiotic abuse or inadequate therapy. An efficient automated sorting tool could prompt individualized interventions and enhance overall patient outcomes. This study aims to develop a robust machine learning classification model using a combination of time-series chest radiographs and laboratory data to accurately classify pulmonary status caused by Acinetobacter baumannii. METHODS: We proposed nested logistic regression models based on different time-series data to automatically classify the pulmonary status of patients with Acinetobacter baumannii. Advanced features were extracted from the time-series data of hospitalized patients, encompassing dynamic pneumonia indicators observed on chest radiographs and laboratory indicator values recorded at three specific time points. RESULTS: Data of 152 patients with Acinetobacter baumannii cultured from sputum or alveolar lavage fluid were retrospectively analyzed. Our model with multiple time-series data demonstrated a higher performance of AUC (0.850, with a 95% confidence interval of [0.638-0.873]), an accuracy of 0.761, a sensitivity of 0.833. The model, which only incorporated a single time point feature, achieved an AUC of 0.741. The influential model variables included difference in the chest radiograph pneumonia score. CONCLUSION: Dynamic assessment of time-series chest radiographs and laboratory data using machine learning allowed for accurate classification of colonization and infection with Acinetobacter baumannii. This demonstrates the potential to help clinicians provide individualized treatment through early detection.


Subject(s)
Acinetobacter Infections , Acinetobacter baumannii , Pneumonia , Humans , Retrospective Studies , Acinetobacter Infections/diagnostic imaging , Anti-Bacterial Agents/therapeutic use , Pneumonia/drug therapy
2.
Phys Med Biol ; 68(4)2023 02 10.
Article in English | MEDLINE | ID: mdl-36595312

ABSTRACT

Objective. In digital breast tomosynthesis (DBT), architectural distortion (AD) is a breast lesion that is difficult to detect. Compared with typical ADs, which have radial patterns, identifying a typical ADs is more difficult. Most existing computer-aided detection (CADe) models focus on the detection of typical ADs. This study focuses on atypical ADs and develops a deep learning-based CADe model with an adaptive receptive field in DBT.Approach. Our proposed model uses a Gabor filter and convergence measure to depict the distribution of fibroglandular tissues in DBT slices. Subsequently, two-dimensional (2D) detection is implemented using a deformable-convolution-based deep learning framework, in which an adaptive receptive field is introduced to extract global features in slices. Finally, 2D candidates are aggregated to form the three-dimensional AD detection results. The model is trained on 99 positive cases with ADs and evaluated on 120 AD-positive cases and 100 AD-negative cases.Main results. A convergence-measure-based model and deep-learning model without an adaptive receptive field are reproduced as controls. Their mean true positive fractions (MTPF) ranging from 0.05 to 4 false positives per volume are 0.3846 ± 0.0352 and 0.6501 ± 0.0380, respectively. Our proposed model achieves an MTPF of 0.7148 ± 0.0322, which is a significant improvement (p< 0.05) compared with the other two methods. In particular, our model detects more atypical ADs, primarily contributing to the performance improvement.Significance. The adaptive receptive field helps the model improve the atypical AD detection performance. It can help radiologists identify more ADs in breast cancer screening.


Subject(s)
Breast Neoplasms , Breast , Humans , Female , Breast/diagnostic imaging , Breast/pathology , Breast Neoplasms/pathology , Mammography/methods , Early Detection of Cancer , Computers
3.
Front Neurol ; 13: 982783, 2022.
Article in English | MEDLINE | ID: mdl-36247767

ABSTRACT

Purpose: To establish an ensemble machine learning (ML) model for predicting the risk of futile recanalization, malignant cerebral edema (MCE), and cerebral herniation (CH) in patients with acute ischemic stroke (AIS) who underwent mechanical thrombectomy (MT) and recanalization. Methods: This prospective study included 110 patients with premorbid mRS ≤ 2 who met the inclusion criteria. Futile recanalization was defined as a 90-day modified Rankin Scale score >2. Clinical and imaging data were used to construct five ML models that were fused into a logistic regression algorithm using the stacking method (LR-Stacking). We added the Shapley Additive Explanation method to display crucial factors and explain the decision process of models for each patient. Prediction performances were compared using area under the receiver operating characteristic curve (AUC), F1-score, and decision curve analysis (DCA). Results: A total of 61 patients (55.5%) experienced futile recanalization, and 34 (30.9%) and 22 (20.0%) patients developed MCE and CH, respectively. In test set, the AUCs for the LR-Stacking model were 0.949, 0.885, and 0.904 for the three outcomes mentioned above. The F1-scores were 0.882, 0.895, and 0.909, respectively. The DCA showed that the LR-Stacking model provided more net benefits for predicting MCE and CH. The most important factors were the hypodensity volume and proportion in the corresponding vascular supply area. Conclusion: Using the ensemble ML model to analyze the clinical and imaging data of AIS patients with successful recanalization at admission and within 24 h after MT allowed for accurately predicting the risks of futile recanalization, MCE, and CH.

4.
Acta Biochim Pol ; 67(4): 521-529, 2020 Dec 17.
Article in English | MEDLINE | ID: mdl-33332077

ABSTRACT

This study aims to investigate the protection of dexmedetomidine (Dex) against pulmonary ischemia-reperfusion injury (PIRI) in the mouse model and reveal the mechanism in hypoxia reoxygenation (H/R)-induced mouse pulmonary vascular endothelial cells (MPVECs). The lung wet-to-dry weight ratio, histopathological features, and malondialdehyde (MDA) concentrations were measured. The H/R-induced MPVECs were exposed to Dex, and the cell viability, cell apoptosis and protein expressions were assessed by the Cell Counting Kit-8 (CCK8) assay, flow cytometry and western blot, respectively. In addition, the regulatory relationship between miR-21-5p and orphan nuclear receptor 4A1 (Nr4a1) was revealed by several assays, including the dual-luciferase reporter assay, real-time quantitative polymerase chain reaction (RT-qPCR) and western blot. We found that the Dex treatment significantly alleviated pulmonary injury and decreased the level of MDA and wet/dry weight ratio in PIRI mice. Dex treatment also increased cell viability, reduced apoptotic ratio and downregulated expression levels of Cleaved Caspase-3 and Cleaved Caspase-9 in H/R induced MPVECs. Furthermore, the expression of miR-21-5p was upregulated, while Nr4a1 was downregulated by Dex in a concentration-dependent manner in H/R induced MPVECs. Moreover, Nr4a1 was verified as a target of miR-497-5p. Overexpression of Nr4a1 could reverse the protective effects of Dex on alleviating H/R-induced injury in MPVECs. Taken together, Dex treatment attenuated ischemia-reperfusion induced pulmonary injury through modulating the miR-21-5p/Nr4a1 signaling pathway.


Subject(s)
Adrenergic alpha-2 Receptor Agonists/pharmacology , Dexmedetomidine/pharmacology , Endothelial Cells/drug effects , MicroRNAs/genetics , Nuclear Receptor Subfamily 4, Group A, Member 1/genetics , Reperfusion Injury/drug therapy , Animals , Apoptosis/drug effects , Base Pairing , Base Sequence , Caspase 3/genetics , Caspase 3/metabolism , Caspase 9/genetics , Caspase 9/metabolism , Cell Survival/drug effects , Endothelial Cells/metabolism , Endothelial Cells/pathology , Female , Gene Expression Regulation , HEK293 Cells , Humans , Lung/drug effects , Lung/metabolism , Lung/pathology , Malondialdehyde/antagonists & inhibitors , Malondialdehyde/metabolism , Mice , Mice, Inbred C57BL , MicroRNAs/metabolism , Nuclear Receptor Subfamily 4, Group A, Member 1/antagonists & inhibitors , Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism , Reperfusion Injury/genetics , Reperfusion Injury/metabolism , Reperfusion Injury/pathology , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...