Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Gastroenterol Hepatol ; 38(8): 1333-1345, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37210613

ABSTRACT

BACKGROUND AND AIM: Curcumin may have promising application in the prevention and amelioration of inflammatory bowel disease (IBD). However, the underlying mechanisms underpinning the ability of curcumin to interact with the gut and liver in IBD remains to be defined, which is the exploration aim of this study. METHODS: Mice with dextran sulfate sodium salt (DSS)-induced acute colitis were treated either with 100 mg/kg of curcumin or phosphate buffer saline (PBS). Hematoxylin-eosin (HE) staining, 16S rDNA Miseq sequencing, proton nuclear magnetic resonance (1 H NMR) spectroscopy, and liquid chromatography-tandem mass spectrometry (LC-MS/MS) were applied for analysis. Spearman's correlation coefficient (SCC) was utilized to assess the correlation between the modification of intestinal bacteria and hepatic metabolite parameters. RESULTS: Curcumin supplementation not only prevented further loss of body weight and colon length in IBD mice but also improved diseases activity index (DAI), colonic mucosal injury, and inflammatory infiltration. Meanwhile, curcumin restored the composition of the gut microbiota, significantly increased Akkermansia, Muribaculaceae_unclassified, and Muribaculum, and significantly elevated the concentration of propionate, butyrate, glycine, tryptophan, and betaine in the intestine. For hepatic metabolic disturbances, curcumin intervention altered 14 metabolites, including anthranilic acid and 8-amino-7-oxononanoate while enriching pathways related to the metabolism of bile acids, glucagon, amino acids, biotin, and butanoate. Furthermore, SCC analysis revealed a potential correlation between the upregulation of intestinal probiotics and alterations in liver metabolites. CONCLUSION: The therapeutic mechanism of curcumin against IBD mice occurs by improving intestinal dysbiosis and liver metabolism disorders, thus contributing to the stabilization of the gut-liver axis.


Subject(s)
Colitis , Curcumin , Inflammatory Bowel Diseases , Liver Diseases , Animals , Mice , Curcumin/pharmacology , Curcumin/therapeutic use , Dextran Sulfate , Dysbiosis/drug therapy , Chromatography, Liquid , Tandem Mass Spectrometry , Colitis/chemically induced , Colitis/drug therapy , Colitis/prevention & control , Inflammatory Bowel Diseases/microbiology , Colon/pathology , Mice, Inbred C57BL , Disease Models, Animal
2.
Pharmacology ; 106(9-10): 498-508, 2021.
Article in English | MEDLINE | ID: mdl-34352791

ABSTRACT

BACKGROUND: Non-small-cell lung carcinoma is one of the most frequently diagnosed cancers. Cisplatin (CDDP) is a currently applied standard anticancer agent for advanced lung cancers. Although effectively clinical response was achieved initially, a large fraction of lung cancer patients developed cisplatin resistance. Therefore, understanding the molecular mechanisms of chemoresistance is crucial for anti-lung cancer therapy. Long non-coding RNA (lncRNA)-X-inactive-specific transcript (XIST) has been reported to be positively associated with multiple cancers. Currently, the precise role and mechanism of XIST in cisplatin resistance of lung cancer have not been elucidated. METHODS: The expression levels of miR-101-3p and lncRNA XIST were detected by qRT-PCR. Cisplatin-resistant lung cancer cell line was established by selecting the survival cells under gradually increased cisplatin treatments. The cell proliferation was detected by MTT assay, and the cellular glucose metabolism rate was evaluated by Seahorse metabolic flux analysis and glucose uptake and lactate product assays. Glycolysis-related protein expression levels were detected by Western blot. Dual luciferase reporter was constructed to determine the lncRNA-miRNA interaction. RESULTS: Here, we report XIST is significantly upregulated in lung cancer tissues compared with normal lung tissues. In addition, cisplatin-resistant lung cancer cells displayed remarkably elevated XIST expression. We demonstrated that miR-101-3p functioned as a tumor suppressor in lung cancer and sensitized lung cancer cells to cisplatin. Bioinformatics analysis predicted miR-101-3p could be a potential target of XIST through direct binding with it as a competing endogenous RNA, which was further validated from lung tumor tissues and cell lines by luciferase assay. Intriguingly, XIST significantly promoted cellular glycolysis rate of lung cancer cells. The extracellular acidification rate, glucose uptake, and lactate product were elevated by XIST overexpression. On the contrary, miR-101-3p effectively suppressed glycolysis rate. Finally, we demonstrated silencing XIST significantly recovered miR-101-3p expression and downregulated expression of glycolysis key enzymes, a phenotype could be further overridden by miR-101-3p inhibition. CONCLUSIONS: This study reveals a new molecular mechanism for the lncRNA-XIST-promoted cisplatin resistance via sponging miR-101-3p, leading to de-repression of cellular glycolysis. Moreover, these findings warrant further in vivo investigations to study XIST as a potential target to overcome cisplatin resistance.


Subject(s)
Antineoplastic Agents/pharmacology , Cisplatin/pharmacology , Drug Resistance, Neoplasm/physiology , MicroRNAs/biosynthesis , RNA, Long Noncoding/biosynthesis , Adult , Cell Line, Tumor , Cell Proliferation , Female , Humans , Lung Neoplasms , Male , Middle Aged , Neoplasm Staging
3.
J Magn Reson Imaging ; 54(6): 1754-1760, 2021 12.
Article in English | MEDLINE | ID: mdl-34117662

ABSTRACT

BACKGROUND: Bone marrow of patients with aplastic anemia (AA) is different from that of patients with myelodysplastic syndrome (MDS) and is difficult to identify by blood examination. IDEAL-IQ (iterative decomposition of water and fat with echo asymmetry and least-squares estimation) imaging might be able to quantify fat fraction (FF) and iron content in bone tissues. PURPOSE: To determine if IDEAL-IQ measurements of bone marrow FF and iron content can distinguish between patients with AA and MDS. STUDY TYPE: Retrospective. POPULATION: Fifty-seven patients with AA, 21 patients with MDS, and 24 healthy controls. FIELD STRENGTH/SEQUENCE: 3.0 T, IDEAL-IQ sequence. ASSESSMENT: Three independent observers evaluated the IDEAL-IQ images and measured FF and R2* in the left posterior superior iliac spine. STATISTICAL TESTS: Kruskal-Wallis test, linear correlations, and Bland-Altman analysis were used. A P-value of <0.05 was considered statistically significant. RESULTS: The FF in patients with AA (79.46% ± 15.00%) was significantly higher than that in patients with MDS (42.78% ± 30.09%) and control subjects (65.50% ± 14.73%). However, there was no significant difference in FF between control subjects and patients with MDS (P = 0.439). The R2* value of AA, MDS, and controls was 145.38 ± 53.33, (171.13 ± 100.89, and 135.99 ± 32.41/second, respectively, with no significant difference between the three groups (P = 0.553). DATA CONCLUSION: Quantitative IDEAL-IQ magnetic resonance imaging may facilitate the diagnosis of AA and distinguish it from MDS. LEVEL OF EVIDENCE: 3 TECHNICAL EFFICACY STAGE: 2.


Subject(s)
Anemia, Aplastic , Myelodysplastic Syndromes , Anemia, Aplastic/diagnostic imaging , Bone Marrow/diagnostic imaging , Bone and Bones , Humans , Iron , Magnetic Resonance Imaging , Myelodysplastic Syndromes/diagnostic imaging , Retrospective Studies
4.
Cancer Cell Int ; 20: 350, 2020.
Article in English | MEDLINE | ID: mdl-32742197

ABSTRACT

BACKGROUND: This study aims to investigate the mechanism underlying the high level of long non-coding RNA FOXD3-AS1 in cisplatin-resistant NSCLC cells. METHODS: Cisplatin-resistant cells were generated from A549 cells. CCK-8 were used to evaluate cell proliferation. The FOXD3-AS1, miR-127-3p, MDM2 and MRP1 mRNA expression levels were confirmed by qRT-PCR. Protein levels of MDM2 and MRP1 were determined by western blot assay. Luciferase reporter and RNA pull-down assays were evaluated the relationship between miR-127-3p and FOXD3-AS1/MDM2. In vivo tumor growth was evaluated in a xenograft nude mice model. RESULTS: FOXD3-AS1 was up-regulated in cisplatin-resistant NSCLC cells (A549/DDP and H1299/DDP cells) in comparison with their parental cell lines. Overexpression of FOXD3-AS1 promoted cisplatin-resistance in A549 and H1299 cells; while FOXD3-AS1 knockdown sensitized A549/DDP and H1299/DDP cells to cisplatin treatment. FOXD3-AS1 regulated miR-127-3p expression by acting as a competing endogenous RNA, and miR-127-3p repressed MDM2 expression via targeting the 3'UTR. MiR-127-3p overexpression and MDM2 knockdown both increased the chemo-sensitivity in A549/DDP cells; while miR-127-3p knockdown and MDM2 overexpression both promoted chemoresistance in A549 cells. Further rescue experiments revealed that miR-127-3p knockdown or MDM2 overexpression counteracted the suppressive effects of FOXD3-AS1 knockdown on chemo-resistance and MRP1 expression in A549/DDP cells. In vivo studies showed that FOXD3-AS1 knockdown potentiated the antitumor effects of cisplatin treatment. Inspection of clinical samples showed the upregulation of FOXD3-AS1 and MDM2, and down-regulation of miR-127-3p in NSCLC tissues compared to normal adjacent tissues. CONCLUSION: In conclusion, our results suggest that LncRNA FOXD3-AS1 promotes chemo-resistance of NSCLC cells via directly acting on miR-127-3p/MDM2 axis. Our findings may provide novel perspectives for the treatment of NSCLC in patients resistant to chemotherapy.

5.
J Cell Biochem ; 121(8-9): 3814-3824, 2020 Aug.
Article in English | MEDLINE | ID: mdl-31692094

ABSTRACT

Non-small cell lung cancer (NSCLC) is the main type of lung malignancy. Early diagnosis and treatments for NSCLC are far from satisfactory due to the limited knowledge of the molecular mechanisms regarding NSCLC progression. Long noncoding RNA (lncRNA) ZNFX1 antisense RNA1 (ZFAS1) has been implicated for its functional role in the progression of malignant tumors. This study aimed to determine the ZFAS1 expression from lung cancer clinical samples and to explore the molecular mechanisms underlying ZFAS1-modulated NSCLC progression. Experimental assays revealed that clinical samples and cell lines of lung malignant tumors showed an upregulation of ZFSA1. ZFAS1 expression was markedly upregulated in the lung tissues from patients with advanced stage of this malignancy. The loss-of-function assays showed that knockdown of ZFAS1-suppressed NSCLC cell proliferative, as well as invasive potentials, increased NSCLC cell apoptotic rates in vitro and also attenuated tumor growth of NSCLC cells in the nude mice. Further experimental evidence showed that ZFAS1 inversely affected miR-150-5p expression and positively affected high-mobility group AT-hook 2 (HMGA2) expression in NSCLC cell lines. MiR-150-5p inhibition or HMGA2 overexpression counteracted the effects of ZFAS1 knockdown on NSCLC cell proliferative, invasive potentials and apoptotic rates. In light of examining the clinical lung cancer samples, miR-150-5p expression was downregulated and the HMGA2 expression was highly expressed in the lung cancer tissues compared with normal ones; the ZFAS1 expression showed a negative correlation with miR-150-5p expression but a positive correlation with HMGA2 expression in lung cancer tissues. To summarize, we, for the first time, demonstrated the inhibitory effects of ZFAS1 knockdown on NSCLC cell progression, and the results from mechanistic studies indicated that ZFAS1-mediated NSCLC progression cells via targeting miR-150-5p/HMGA2 signaling.

SELECTION OF CITATIONS
SEARCH DETAIL
...