Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 274
Filter
1.
J Cell Physiol ; 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38946173

ABSTRACT

Amino acids are essential building blocks for proteins, crucial energy sources for cell survival, and key signaling molecules supporting the resistant growth of tumor cells. In tumor cells, amino acid metabolic reprogramming is characterized by the enhanced uptake of amino acids as well as their aberrant synthesis, breakdown, and transport, leading to immune evasion and malignant progression of tumor cells. This article reviews the altered amino acid metabolism in tumor cells and its impact on tumor microenvironment, and also provides an overview of the current clinical applications of amino acid metabolism. Innovative drugs targeting amino acid metabolism hold great promise for precision and personalized cancer therapy.

2.
Biochim Biophys Acta Mol Basis Dis ; : 167352, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-39004379

ABSTRACT

Nasopharyngeal carcinoma (NPC) is a malignant tumor that occurs in the nasopharynx. Palate, lung, and nasal epithelium clone (PLUNC) has been identified as an early secreted protein that is specifically expressed in the nasopharynx. The aim of this study was to determine the role and mechanism of PLUNC in NPC. We used mRNA sequencing (seq) combined with ribosome-nascent chain complex (RNC)-seq to determine the biological role of PLUNC. The expression of epithelial-to-mesenchymal transition (EMT)-related molecules was detected by western blotting. Then, cell migration and invasion were detected by wound healing and Transwell chamber assays. NPC cells were injected into the tail vein of nude mice to explore the biological role of PLUNC in vivo. The sequencing results showed that PLUNC inhibited the progression of NPC and its expression was correlated with that of NOD-like receptors. Experiments confirmed that PLUNC inhibited the invasion and metastasis of NPC cells by promoting the ubiquitination degradation of NLRP3. PLUNC overexpression in combination with the treatment by MCC950, an inhibitor of NLRP3 inflammasome activation, was most effective in inhibiting NPC invasion and metastasis. In vivo experiments also confirmed that the combination of PLUNC overexpression and MCC950 treatment effectively inhibited the lung metastasis of NPC cells. In summary, our research suggested that PLUNC inhibited the invasion and metastasis of NPC by inhibiting NLRP3 inflammasome activation, and targeting the PLUNC-NLRP3 inflammasome axis could provide a new strategy for the diagnosis and treatment of NPC patients.

3.
Clin Transl Med ; 14(7): e1766, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39021049

ABSTRACT

BACKGROUND: N6-methyladenosine (m6A) modification is essential for modulating RNA processing as well as expression, particularly in the context of malignant tumour progression. However, the exploration of m6A modification in nasopharyngeal carcinoma (NPC) remains very limited. METHODS: RNA m6A levels were analysed in NPC using m6A dot blot assay. The expression level of methyltransferase-like 14 (METTL14) within NPC tissues was analysed from public databases as well as RT-qPCR and immunohistochemistry. The influences on METTL14 expression on NPC proliferation and metastasis were explored via in vitro as well as in vivo functional assays. Targeted genes of METTL14 were screened using the m6A and gene expression profiling microarray data. Actinomycin D treatment and polysome analysis were used to detect the half-life and translational efficiency of ANKRD22. Flow cytometry, immunofluorescence and immunoprecipitation were used to validate the role of ANKRD22 on lipid metabolism in NPC cells. ChIP-qPCR analysis of H3K27AC signalling near the promoters of METTL14, GINS3, POLE2, PLEK2 and FERMT1 genes. RESULTS: We revealed METTL14, in NPC, correlating with poor patient prognosis. In vitro and in vivo assays indicated METTL14 actively promoted NPC cells proliferation and metastasis. METTL14 catalysed m6A modification on ANKRD22 messenger ribonucleic acid (mRNA), recognized by the reader IGF2BP2, leading to increased mRNA stability and higher translational efficiency. Moreover, ANKRD22, a metabolism-related protein on mitochondria, interacted with SLC25A1 to enhance citrate transport, elevating intracellular acetyl-CoA content. This dual impact of ANKRD22 promoted lipid metabolism reprogramming and cellular lipid synthesis while upregulating the expression of genes associated with the cell cycle (GINS3 and POLE2) and the cytoskeleton (PLEK2 and FERMT1) through heightened epigenetic histone acetylation levels in the nucleus. Intriguingly, our findings highlighted elevated ANKRD22-mediated histone H3 lysine 27 acetylation (H3K27AC) signals near the METTL14 promoter, which contributes to a positive feedback loop perpetuating malignant progression in NPC. CONCLUSIONS: The identified METTL14-ANKRD22-SLC25A1 axis emerges as a promising therapeutic target for NPC, and also these molecules may serve as novel diagnostic biomarkers.


Subject(s)
Lipid Metabolism , Methyltransferases , Nasopharyngeal Carcinoma , Nasopharyngeal Neoplasms , Humans , Nasopharyngeal Carcinoma/genetics , Nasopharyngeal Carcinoma/metabolism , Nasopharyngeal Carcinoma/pathology , Methyltransferases/metabolism , Methyltransferases/genetics , Lipid Metabolism/genetics , Nasopharyngeal Neoplasms/genetics , Nasopharyngeal Neoplasms/metabolism , Nasopharyngeal Neoplasms/pathology , RNA, Messenger/metabolism , RNA, Messenger/genetics , Disease Progression , Adenosine/analogs & derivatives , Adenosine/metabolism , Adenosine/genetics , Mice , Animals , Gene Expression Regulation, Neoplastic/genetics , Metabolic Reprogramming
4.
PLoS Biol ; 22(6): e3002666, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38905316

ABSTRACT

Breast cancer is the most prevalent malignancy and the most significant contributor to mortality in female oncology patients. Potassium Two Pore Domain Channel Subfamily K Member 1 (KCNK1) is differentially expressed in a variety of tumors, but the mechanism of its function in breast cancer is unknown. In this study, we found for the first time that KCNK1 was significantly up-regulated in human breast cancer and was correlated with poor prognosis in breast cancer patients. KCNK1 promoted breast cancer proliferation, invasion, and metastasis in vitro and vivo. Further studies unexpectedly revealed that KCNK1 increased the glycolysis and lactate production in breast cancer cells by binding to and activating lactate dehydrogenase A (LDHA), which promoted histones lysine lactylation to induce the expression of a series of downstream genes and LDHA itself. Notably, increased expression of LDHA served as a vicious positive feedback to reduce tumor cell stiffness and adhesion, which eventually resulted in the proliferation, invasion, and metastasis of breast cancer. In conclusion, our results suggest that KCNK1 may serve as a potential breast cancer biomarker, and deeper insight into the cancer-promoting mechanism of KCNK1 may uncover a novel therapeutic target for breast cancer treatment.


Subject(s)
Breast Neoplasms , Cell Proliferation , Histones , Animals , Female , Humans , Mice , Breast Neoplasms/pathology , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , Glycolysis/genetics , Histones/metabolism , L-Lactate Dehydrogenase/metabolism , L-Lactate Dehydrogenase/genetics , Lactate Dehydrogenase 5/metabolism , Lactate Dehydrogenase 5/genetics , Mice, Inbred BALB C , Mice, Nude , Neoplasm Invasiveness , Neoplasm Metastasis , Potassium Channels, Tandem Pore Domain/metabolism , Potassium Channels, Tandem Pore Domain/genetics , Prognosis , Up-Regulation/genetics
5.
Int Immunopharmacol ; 137: 112523, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-38909500

ABSTRACT

BACKGROUND: APLNR is a G protein-coupled receptor and our previous study had revealed that APLNR could inhibit nasopharyngeal carcinoma (NPC) growth and metastasis. However, the role of APLNR in regulating PD-L1 expression and immune escape in NPC is unknown. METHODS: We analyzed the expression and correlation of APLNR and PD-L1 in NPC tissues and cells. We investigated the effect of APLNR on PD-L1 expression and the underlying mechanism in vitro and in vivo. We also evaluated the therapeutic potential of targeting APLNR in combination with PD-L1 antibody in a nude mouse xenograft model. RESULTS: We found that APLNR was negatively correlated with PD-L1 in NPC tissues and cells. APLNR could inhibit PD-L1 expression by binding to the FERM domain of JAK1 and blocking the interaction between JAK1 and IFNGR1, thus suppressing IFN-γ-mediated activation of the JAK1/STAT1 pathway. APLNR could also inhibit NPC immune escape by enhancing IFN-γ secretion and CD8+ T-cell infiltration and reducing CD8+ T-cell apoptosis and dysfunction. Moreover, the best effect was achieved in inhibiting NPC growth in nude mice when APLNR combined with PD-L1 antibody. CONCLUSIONS: Our study revealed a novel mechanism of APLNR regulating PD-L1 expression and immune escape in NPC and suggested that APLNR maybe a potential therapeutic target for NPC immunotherapy.


Subject(s)
B7-H1 Antigen , Mice, Nude , Nasopharyngeal Carcinoma , Nasopharyngeal Neoplasms , Tumor Escape , B7-H1 Antigen/metabolism , B7-H1 Antigen/immunology , Animals , Humans , Nasopharyngeal Carcinoma/immunology , Nasopharyngeal Carcinoma/pathology , Nasopharyngeal Neoplasms/immunology , Nasopharyngeal Neoplasms/pathology , Cell Line, Tumor , Tumor Escape/drug effects , Mice , Xenograft Model Antitumor Assays , Down-Regulation , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/immunology , Mice, Inbred BALB C , CD8-Positive T-Lymphocytes/immunology , Female , STAT1 Transcription Factor/metabolism , Janus Kinase 1/metabolism , Male , Interferon-gamma/metabolism , Receptors, Interferon/genetics , Receptors, Interferon/metabolism , Gene Expression Regulation, Neoplastic/drug effects
6.
Adv Sci (Weinh) ; : e2309471, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38889269

ABSTRACT

Patients with glycogen storage disease type Ib (GSD-Ib) frequently have inflammatory bowel disease (IBD). however, the underlying etiology remains unclear. Herein, this study finds that digestive symptoms are commonly observed in patients with GSD-Ib, presenting as single or multiple scattered deep round ulcers, inflammatory pseudo-polyps, obstructions, and strictures, which differ substantially from those in typical IBD. Distinct microbiota profiling and single-cell clustering of colonic mucosae in patients with GSD are conducted. Heterogeneous oral pathogenic enteric outgrowth induced by GSD is a potent inducer of gut microbiota immaturity and colonic macrophage accumulation. Specifically, a unique population of macrophages with high CCL4L2 expression is identified in response to pathogenic bacteria in the intestine. Hyper-activation of the CCL4L2-VSIR axis leads to increased expression of AGR2 and ZG16 in epithelial cells, which mediates the unique progression of IBD in GSD-Ib. Collectively, the microbiota-driven pathomechanism of IBD is demonstrated in GSD-Ib and revealed the active role of the CCL4L2-VSIR axis in the interaction between the microbiota and colonic mucosal immunity. Thus, targeting gut dysbiosis and/or the CCL4L2-VISR axis may represent a potential therapy for GSD-associated IBD.

7.
Med Oncol ; 41(6): 159, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38761335

ABSTRACT

RNA modification has garnered increasing attention in recent years due to its pivotal role in tumorigenesis and immune surveillance. N6-methyladenosine (m6A) modification is the most prevalent RNA modification, which can affect the expression of RNA by methylating adenylate at the sixth N position to regulate the occurrence and development of tumors. Dysregulation of m6A affects the activation of cancer-promoting pathways, destroys immune cell function, maintains immunosuppressive microenvironment, and promotes tumor cell growth. In this review, we delve into the latest insights into how abnormalities in m6A modification in both tumor and immune cells orchestrate immune evasion through the activation of signaling pathways. Furthermore, we explore how dysregulated m6A modification in tumor cells influences immune cells, thereby regulating tumor immune evasion via interactions within the tumor microenvironment (TME). Lastly, we highlight recent discoveries regarding specific inhibitors of m6A modulators and the encapsulation of m6A-targeting nanomaterials for cancer therapy, discussing their potential applications in immunotherapy.


Subject(s)
Adenosine , Immunotherapy , Neoplasms , Tumor Microenvironment , Humans , Immunotherapy/methods , Tumor Microenvironment/immunology , Adenosine/analogs & derivatives , Adenosine/metabolism , Adenosine/immunology , Neoplasms/immunology , Neoplasms/therapy , Neoplasms/pathology , Tumor Escape/immunology , Animals , Immune Evasion/immunology , Signal Transduction/immunology
8.
J Exp Clin Cancer Res ; 43(1): 147, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38769583

ABSTRACT

A century ago, the Warburg effect was first proposed, revealing that cancer cells predominantly rely on glycolysis during the process of tumorigenesis, even in the presence of abundant oxygen, shifting the main pathway of energy metabolism from the tricarboxylic acid cycle to aerobic glycolysis. Recent studies have unveiled the dynamic transfer of mitochondria within the tumor microenvironment, not only between tumor cells but also between tumor cells and stromal cells, immune cells, and others. In this review, we explore the pathways and mechanisms of mitochondrial transfer within the tumor microenvironment, as well as how these transfer activities promote tumor aggressiveness, chemotherapy resistance, and immune evasion. Further, we discuss the research progress and potential clinical significance targeting these phenomena. We also highlight the therapeutic potential of targeting intercellular mitochondrial transfer as a future anti-cancer strategy and enhancing cell-mediated immunotherapy.


Subject(s)
Mitochondria , Neoplasms , Humans , Neoplasms/metabolism , Neoplasms/therapy , Neoplasms/pathology , Neoplasms/drug therapy , Mitochondria/metabolism , Tumor Microenvironment , Animals , Nanotubes
9.
Mol Cancer ; 23(1): 108, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38762484

ABSTRACT

Immune evasion contributes to cancer growth and progression. Cancer cells have the ability to activate different immune checkpoint pathways that harbor immunosuppressive functions. The programmed death protein 1 (PD-1) and programmed cell death ligands (PD-Ls) are considered to be the major immune checkpoint molecules. The interaction of PD-1 and PD-L1 negatively regulates adaptive immune response mainly by inhibiting the activity of effector T cells while enhancing the function of immunosuppressive regulatory T cells (Tregs), largely contributing to the maintenance of immune homeostasis that prevents dysregulated immunity and harmful immune responses. However, cancer cells exploit the PD-1/PD-L1 axis to cause immune escape in cancer development and progression. Blockade of PD-1/PD-L1 by neutralizing antibodies restores T cells activity and enhances anti-tumor immunity, achieving remarkable success in cancer therapy. Therefore, the regulatory mechanisms of PD-1/PD-L1 in cancers have attracted an increasing attention. This article aims to provide a comprehensive review of the roles of the PD-1/PD-L1 signaling in human autoimmune diseases and cancers. We summarize all aspects of regulatory mechanisms underlying the expression and activity of PD-1 and PD-L1 in cancers, including genetic, epigenetic, post-transcriptional and post-translational regulatory mechanisms. In addition, we further summarize the progress in clinical research on the antitumor effects of targeting PD-1/PD-L1 antibodies alone and in combination with other therapeutic approaches, providing new strategies for finding new tumor markers and developing combined therapeutic approaches.


Subject(s)
B7-H1 Antigen , Neoplasms , Programmed Cell Death 1 Receptor , Humans , Neoplasms/metabolism , Neoplasms/immunology , Neoplasms/pathology , Neoplasms/etiology , Neoplasms/genetics , Programmed Cell Death 1 Receptor/metabolism , B7-H1 Antigen/metabolism , Animals , Signal Transduction , Gene Expression Regulation, Neoplastic
10.
J Exp Clin Cancer Res ; 43(1): 122, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38654320

ABSTRACT

BACKGROUND: Radiation therapy stands to be one of the primary approaches in the clinical treatment of malignant tumors. Nasopharyngeal Carcinoma, a malignancy predominantly treated with radiation therapy, provides an invaluable model for investigating the mechanisms underlying radiation therapy resistance in cancer. While some reports have suggested the involvement of circRNAs in modulating resistance to radiation therapy, the underpinning mechanisms remain unclear. METHODS: RT-qPCR and in situ hybridization were used to detect the expression level of circCDYL2 in nasopharyngeal carcinoma tissue samples. The effect of circCDYL2 on radiotherapy resistance in nasopharyngeal carcinoma was demonstrated by in vitro and in vivo functional experiments. The HR-GFP reporter assay determined that circCDYL2 affected homologous recombination repair. RNA pull down, RIP, western blotting, IF, and polysome profiling assays were used to verify that circCDYL2 promoted the translation of RAD51 by binding to EIF3D protein. RESULTS: We have identified circCDYL2 as highly expressed in nasopharyngeal carcinoma tissues, and it was closely associated with poor prognosis. In vitro and in vivo experiments demonstrate that circCDYL2 plays a pivotal role in promoting radiotherapy resistance in nasopharyngeal carcinoma. Our investigation unveils a specific mechanism by which circCDYL2, acting as a scaffold molecule, recruits eukaryotic translation initiation factor 3 subunit D protein (EIF3D) to the 5'-UTR of RAD51 mRNA, a crucial component of the DNA damage repair pathway to facilitate the initiation of RAD51 translation and enhance homologous recombination repair capability, and ultimately leads to radiotherapy resistance in nasopharyngeal carcinoma. CONCLUSIONS: These findings establish a novel role of the circCDYL2/EIF3D/RAD51 axis in nasopharyngeal carcinoma radiotherapy resistance. Our work not only sheds light on the underlying molecular mechanism but also highlights the potential of circCDYL2 as a therapeutic sensitization target and a promising prognostic molecular marker for nasopharyngeal carcinoma.


Subject(s)
Nasopharyngeal Carcinoma , Rad51 Recombinase , Radiation Tolerance , Recombinational DNA Repair , Humans , Nasopharyngeal Carcinoma/radiotherapy , Nasopharyngeal Carcinoma/genetics , Nasopharyngeal Carcinoma/metabolism , Nasopharyngeal Carcinoma/pathology , Rad51 Recombinase/metabolism , Rad51 Recombinase/genetics , Mice , Animals , Radiation Tolerance/genetics , RNA, Circular/genetics , Nasopharyngeal Neoplasms/radiotherapy , Nasopharyngeal Neoplasms/genetics , Nasopharyngeal Neoplasms/metabolism , Nasopharyngeal Neoplasms/pathology , Cell Line, Tumor , Female , Male , Prognosis , Mice, Nude
11.
Cell Oncol (Dordr) ; 47(3): 733-757, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38170381

ABSTRACT

BACKGROUND: Natural killer (NK) cells have gained considerable attention and hold great potential for their application in tumor immunotherapy. This is mainly due to their MHC-unrestricted and pan-specific recognition capabilities, as well as their ability to rapidly respond to and eliminate target cells. To artificially generate therapeutic NK cells, various materials can be utilized, such as peripheral blood mononuclear cells (PBMCs), umbilical cord blood (UCB), induced pluripotent stem cells (iPSCs), and NK cell lines. Exploiting the therapeutic potential of NK cells to treat tumors through in vivo and in vitro therapeutic modalities has yielded positive therapeutic results. CONCLUSION: This review provides a comprehensive description of NK cell therapeutic approaches for tumors and discusses the current problems associated with these therapeutic approaches and the prospects of NK cell therapy for tumors.


Subject(s)
Immunotherapy , Killer Cells, Natural , Neoplasms , Humans , Killer Cells, Natural/immunology , Neoplasms/therapy , Neoplasms/immunology , Immunotherapy/methods , Animals
12.
Sci China Life Sci ; 67(5): 940-957, 2024 May.
Article in English | MEDLINE | ID: mdl-38212458

ABSTRACT

Adhesion molecules mediate cell-to-cell and cell-to-extracellular matrix interactions and transmit mechanical and chemical signals among them. Various mechanisms deregulate adhesion molecules in cancer, enabling tumor cells to proliferate without restraint, invade through tissue boundaries, escape from immune surveillance, and survive in the tumor microenvironment. Recent studies have revealed that adhesion molecules also drive angiogenesis, reshape metabolism, and are involved in stem cell self-renewal. In this review, we summarize the functions and mechanisms of adhesion molecules in cancer and the tumor microenvironment, as well as the therapeutic strategies targeting adhesion molecules. These studies have implications for furthering our understanding of adhesion molecules in cancer and providing a paradigm for exploring novel therapeutic approaches.


Subject(s)
Cell Adhesion Molecules , Neoplasms , Animals , Humans , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology , Cell Adhesion Molecules/metabolism , Molecular Targeted Therapy/methods , Neoplasms/metabolism , Neoplasms/drug therapy , Neoplasms/therapy , Neovascularization, Pathologic/metabolism , Signal Transduction , Tumor Microenvironment
13.
Adv Sci (Weinh) ; 11(12): e2306515, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38229179

ABSTRACT

In South and Southeast Asia, the habit of chewing betel nuts is prevalent, which leads to oral submucous fibrosis (OSF). OSF is a well-established precancerous lesion, and a portion of OSF cases eventually progress to oral squamous cell carcinoma (OSCC). However, the specific molecular mechanisms underlying the malignant transformation of OSCC from OSF are poorly understood. In this study, the leading-edge techniques of Spatial Transcriptomics (ST) and Spatial Metabolomics (SM) are integrated to obtain spatial location information of cancer cells, fibroblasts, and immune cells, as well as the transcriptomic and metabolomic landscapes in OSF-derived OSCC tissues. This work reveals for the first time that some OSF-derived OSCC cells undergo partial epithelial-mesenchymal transition (pEMT) within the in situ carcinoma (ISC) region, eventually acquiring fibroblast-like phenotypes and participating in collagen deposition. Complex interactions among epithelial cells, fibroblasts, and immune cells in the tumor microenvironment are demonstrated. Most importantly, significant metabolic reprogramming in OSF-derived OSCC, including abnormal polyamine metabolism, potentially playing a pivotal role in promoting tumorigenesis and immune evasion is discovered. The ST and SM data in this study shed new light on deciphering the mechanisms of OSF-derived OSCC. The work also offers invaluable clues for the prevention and treatment of OSCC.


Subject(s)
Carcinoma, Squamous Cell , Head and Neck Neoplasms , Mouth Neoplasms , Oral Submucous Fibrosis , Humans , Oral Submucous Fibrosis/genetics , Oral Submucous Fibrosis/metabolism , Oral Submucous Fibrosis/pathology , Carcinoma, Squamous Cell/genetics , Squamous Cell Carcinoma of Head and Neck , Transcriptome , Tumor Microenvironment , Cell Transformation, Neoplastic , Gene Expression Profiling
14.
Biochim Biophys Acta Rev Cancer ; 1879(2): 189068, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38171406

ABSTRACT

Cancer vaccines, designed to activate the body's own immune system to fight against tumors, are a current trend in cancer treatment and receiving increasing attention. Cancer vaccines mainly include oncolytic virus vaccine, cell vaccine, peptide vaccine and nucleic acid vaccine. Over the course of decades of research, oncolytic virus vaccine T-VEC, cellular vaccine sipuleucel-T, various peptide vaccines, and DNA vaccine against HPV positive cervical cancer have brought encouraging results for cancer therapy, but are losing momentum in development due to their respective shortcomings. In contrast, the advantages of mRNA vaccines such as high safety, ease of production, and unmatched efficacy are on full display. In addition, advances in technology such as pseudouridine modification have cracked down the bottleneck for developing mRNA vaccines including instability, innate immunogenicity, and low efficiency of in vivo delivery. Several cancer mRNA vaccines have achieved promising results in clinical trials, and their usage in conjunction with other immune checkpoint inhibitors (ICIs) has further boosted the efficiency of anti-tumor immune response. We expect a rapid development of mRNA vaccines for cancer immunotherapy in the near future. This review provides a brief overview of the current status of mRNA vaccines, highlights the action mechanism of cancer mRNA vaccines, their recent advances in clinical trials, and prospects for their clinical applications.


Subject(s)
Cancer Vaccines , Oncolytic Viruses , Uterine Cervical Neoplasms , Female , Humans , Cancer Vaccines/genetics , Cancer Vaccines/therapeutic use , mRNA Vaccines , Immunotherapy/methods
15.
Cell Oncol (Dordr) ; 2023 Nov 14.
Article in English | MEDLINE | ID: mdl-37962808

ABSTRACT

PURPOSE: Nasopharyngeal carcinoma (NPC) is an aggressive head and neck disease with a high incidence of distant metastases. Enlargeosomes are cytoplasmic organelles marked by, desmoyokin/AHNAK. This study aimed to evaluate the expression of AHNAK in NPC and its effect on enlargeosomes and to investigate the correlation between AHNAK expression levels and clinical NPC patient characteristics. METHODS: Primary nasopharyngeal carcinoma (NPC) and NPC specimens were evaluated by analyzing public data, and immunohistochemistry. Systematic in vitro and in vivo experiments were performed using different NPC-derived cell lines and mouse models. RESULTS: In this study, we detected AHNAK and Annexin A2(ANXA2), a protein coating the surface of enlargeosomes, in NPC samples. We found that AHNAK was down-regulated. Down-regulation of AHNAK was associated with poor overall survival in NPC patients. Moreover, transcription factor FOSL1-mediated transcriptional repression was responsible for the low expression of AHNAK by recruiting EZH2. Whereas Annexin A2 was upregulated in human NPC tissues. Upregulation of Annexin A2 was associated with lymph node metastasis and distant metastasis in NPC patients. Functional studies confirmed that silencing of AHNAK enhanced the growth, invasion, and metastatic properties of NPC cells both in vitro and in vivo. In terms of mechanism, loss of AHNAK led to an increase of annexin A2 protein level in NPC cells. Silencing ANXA2 restored NPC cells' migrative and invasive ability upon loss of AHNAK. CONCLUSION: Here, we report AHNAK as a tumor suppressor in NPC, which may act through annexin A2 oncogenic signaling in enlargeosome, with potential implications for novel approaches to NPC treatment.

16.
J Int Med Res ; 51(11): 3000605231208582, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37950670

ABSTRACT

OBJECTIVE: This study explored the mechanism of squamous cervical cancer (SCC) progression. METHODS: Reverse transcription-quantitative polymerase chain reaction and western blotting were used to evaluate the expression of myosin light chain 9 (MYL9) in SCC tissues and cell lines. Furthermore, Transwell and Boyden assays were used to assess the function of MYL9 in SCC progression. In addition, the levels of lactate and aerobic glycolysis were used to explore the detailed mechanism of MYL9 in SCC. RESULTS: The mRNA and protein levels of MYL9 were elevated in SCC tissues, and MYL9 knockdown inhibited the migration and invasion of SCC cell lines. A mechanistic study demonstrated that MYL9 promotes SCC migration and invasion by enhancing aerobic glycolysis and increasing the activity of the Janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) pathway. CONCLUSIONS: MYL9 was upregulated in SCC, and it enhanced JAK2/STAT3 pathway activity and promoted metastasis and glycolysis in SCC.


Subject(s)
Carcinoma, Squamous Cell , Uterine Cervical Neoplasms , Female , Humans , Uterine Cervical Neoplasms/pathology , Cell Line, Tumor , Cervix Uteri/pathology , Phosphorylation , Carcinoma, Squamous Cell/pathology , Cell Movement/genetics , Cell Proliferation/genetics , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism , Gene Expression Regulation, Neoplastic , Myosin Light Chains/genetics , Myosin Light Chains/metabolism
17.
Biochim Biophys Acta Rev Cancer ; 1878(6): 189006, 2023 11.
Article in English | MEDLINE | ID: mdl-37913942

ABSTRACT

Stress granules (SGs) are membrane-less organelles that cell forms via liquid-liquid phase separation (LLPS) under stress conditions such as oxidative stress, ER stress, heat shock and hypoxia. SG assembly is a stress-responsive mechanism by regulating gene expression and cellular signaling pathways. Cancer cells face various stress conditions in tumor microenvironment during tumorigenesis, while SGs contribute to hallmarks of cancer including proliferation, invasion, migration, avoiding apoptosis, metabolism reprogramming and immune evasion. Here, we review the connection between SGs and cancer development, the limitation of SGs on current cancer therapy and promising cancer therapeutic strategies targeting SGs in the future.


Subject(s)
Cytoplasmic Granules , Stress, Physiological , Humans , Cytoplasmic Granules/metabolism , Stress Granules , Oxidative Stress , Carcinogenesis/metabolism , Tumor Microenvironment
18.
Cancer Lett ; 573: 216381, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37660884

ABSTRACT

In recent years, there have been multiple breakthroughs in cancer immunotherapy, with immune checkpoint inhibitors becoming the most promising treatment strategy. However, available drugs are not always effective. As an emerging immune checkpoint molecule, CD155 has become an important target for immunotherapy. This review describes the structure and function of CD155, its receptors TIGIT, CD96, and CD226, and summarizes that CD155 expressed by tumor cells can upregulate its expression through the DNA damage response pathway and Ras-Raf-MEK-ERK signaling pathway. This review also elaborates the mechanism of immune escape after binding CD155 to its receptors TIGIT, CD96, and CD226, and summarizes the current progress of immunotherapy research regarding CD155 and its receptors. Besides, it also discusses the future direction of checkpoint immunotherapy.


Subject(s)
Immunotherapy , Neoplasms , Humans , Neoplasms/therapy , Immune Checkpoint Inhibitors , MAP Kinase Signaling System , Antigens, CD
19.
Cancer Lett ; 577: 216409, 2023 11 28.
Article in English | MEDLINE | ID: mdl-37748723

ABSTRACT

The cGAS-STING signaling is an important pathway involved in the regulation of tumor microenvironment, which affects many cellular functions including immune activation. Its role in combating tumor progression is widely recognized, especially with its function in inducing innate and adaptive immune responses, on which many immunotherapies have been developed. However, a growing number of findings also suggest a diversity of its roles in shaping tumor microenvironment, including functions that promote tumor progression. Here, we summarize the functions of the cGAS-STING signaling in tumor microenvironment to maintain tumor survival and proliferation through facilitating the forming of an immunosuppressive tumor microenvironment and discuss the current advances of STING-related immunotherapies.


Subject(s)
Neoplasms , Tumor Microenvironment , Humans , Immunity, Innate , Immunosuppressive Agents , Neoplasms/therapy , Nucleotidyltransferases/genetics , Signal Transduction
20.
Adv Sci (Weinh) ; 10(30): e2302558, 2023 10.
Article in English | MEDLINE | ID: mdl-37632718

ABSTRACT

Single cell RNA sequencing (scRNA-seq) provides a great convenience for studying tumor occurrence and development for its ability to study gene expression at the individual cell level. However, patient-derived tumor tissues are composed of multiple types of cells including tumor cells and adjacent non-malignant cells such as stromal cells and immune cells. The spatial locations of various cells in situ tissues plays a pivotal role in the occurrence and development of tumors, which cannot be elucidated by scRNA-seq alone. Spatially resolved transcriptomics (SRT) technology emerges timely to explore the unrecognized relationship between the spatial background of a particular cell and its functions, and is increasingly used in cancer research. This review provides a systematic overview of the SRT technologies that are developed, in particular the more widely used cutting-edge SRT technologies based on next-generation sequencing (NGS). In addition, the main achievements by SRT technologies in precisely unveiling the underappreciated spatial locations on gene expression and cell function with unprecedented high-resolution in cancer research are emphasized, with the aim of developing more effective clinical therapeutics oriented to a deeper understanding of the interaction between tumor cells and surrounding non-malignant cells.


Subject(s)
Neoplasms , Transcriptome , Humans , Transcriptome/genetics , Gene Expression Profiling , High-Throughput Nucleotide Sequencing , Technology , Neoplasms/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...