Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
Add more filters










Publication year range
1.
Foods ; 13(12)2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38928820

ABSTRACT

Triadica cochinchinensis honey (TCH) is collected from the nectar of the medicinal plant T. cochinchinensis and is considered the most important honey variety in southern China. TCH has significant potential medicinal properties and commercial value. However, reliable markers for application in the authentication of TCH have not yet been established. Herein, a comprehensive characterization of the botanical origin and composition of TCH was conducted by determining the palynological characteristics and basic physicochemical parameters. Liquid chromatography tandem-mass spectrometry (LC-MS/MS) was used to investigate the flavonoid profile composition of TCH, T. cochinchinensis nectar (TCN) and 11 other common varieties of Chinese commercial honey. (-)-Gallocatechin gallate (GCG) was identified as a reliable flavonoid marker for TCH, which was uniquely shared with TCN but absent in the other 11 honey types. Furthermore, the authentication method was validated, and an accurate quantification of GCG in TCH and TCN was conducted. Overall, GCG can be applied as a characteristic marker to identify the botanical origin of TCH.

2.
Animals (Basel) ; 14(11)2024 May 22.
Article in English | MEDLINE | ID: mdl-38891582

ABSTRACT

In the honey bee, the queen's death severely threatens the survival of the colony. In an emergency, new queens are reared from young worker larvae, where nepotism is thought to influence the choice of queen candidates by the workers. This article simulates the emergency queen-rearing process in a colony under natural conditions and records the results of colony selection (without nepotism). In queenless colonies, worker larvae aged three days or younger were preferred for queen rearing, and 1-day-old larvae were the first to be selected for the queen-cell cups. In the capping stage, the number of capped queen cells selected from the 1-day-old larvae was much higher than the 3-day-old larvae. On the first day, the number of emerging queens reared from 1-day-old larvae was significantly higher than the queens reared from 2-day-old and 3-day-old larvae. However, there was no significant difference in the birth weights of queens reared from 1-day-old, 2-day-old, or 3-day-old larvae. When the newly emerged queens were introduced into the original queenless colony, 1-day-old larval queens triggered more worker followers than 2-day-old larval queens. The expression of ovarian development-related genes (vg, hex110, and Jh) was higher in queens reared from 1-day-old larvae than those reared from 2-day-old and 3-day-old larvae, indicating that the quality of the queens reared from 1-day-old larvae is superior. This study shows that in the absence of nepotism, the colony selection of queen candidates at the larval stage, capping stage, and emerging stage is not final, but is gradually optimized to maximize colony development through a "quality control" process.

3.
iScience ; 27(6): 109847, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38840840

ABSTRACT

Camellia oleifera is an economically and medicinally valuable oilseed crop. Honeybee, the most abundant pollinator, rarely visits C. oleifera because of the toxic sugars in the nectar and pollen. These toxic sugars cannot be fully digested by honeybees and inhibit the process of synthesizing trehalose in honeybees. C. oleifera exhibits self-incompatibility, and its pollination heavily depends on Andrena camellia. However, the mechanism by which A. camellia digests toxic sugars in C. oleifera nectar and pollen remains unknown. Consequently, we identified and validated four single-copy genes (α-N-acetyl galactosamine-like, galactokinase, galactose-1-phosphate uridyltransferase, and UDP-galactose-4'-epimerase, abbreviated as NAGA-like, GALK, GALT, and GALE) essential for detoxifying toxic sugars in vitro. Then, we cloned the four genes into Escherichia coli, and expressed enzyme successfully degraded the toxic sugars. The phylogeny suggests that the genes were conserved and functionally diverged among the evolution. These results provide novel insights into pollinator detoxification during co-evolution.

4.
Insects ; 15(4)2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38667393

ABSTRACT

The queen bee is a central and pivotal figure within the colony, serving as the sole fertile female responsible for its reproduction. The queen possesses an open circulatory system, with her ovaries immersed in hemolymph. A continuous and intricate transportation and interchange of substances exist between the ovaries and hemolymph of queen bees. To determine the characteristic metabolites in the hemolymph and ovary, as well as understand how their rapid metabolism contributes to the process of egg-laying by queens, we reared Apis mellifera queens from three different age groups: newly emerged queen (NEQ), newly laying queen (NLQ), and old laying queen (OLQ). Using widely targeted metabolomics, our study revealed that the laying queen (NLQ and OLQ) exhibited faster fatty acid metabolism, up-regulated expression of antioxidants, and significant depletion of amino acids compared to the NEQ. This study revealed that the levels of carnitine and antioxidants (GSH, 2-O-α-D-glucopyranosyl-L-ascorbic acid, L-ascorbic acid 2-phosphate, etc.) in the NLQ and OLQ were significantly higher compared to NEQ. However, most of the differentially expressed amino acids, such as L-tryptophan, L-tyrosine, L-aspartic acid, etc., detected in NLQ and OLQ were down-regulated compared to the NEQ. Following egg-laying, pathways in the queens change significantly, e.g., Tryptophan metabolism, Tyrosine metabolism, cAMP signaling pathway, etc. Our results suggest that carnitine and antioxidants work together to maintain the redox balance of the queen. Additionally, various amino acids are responsible for maintaining the queen's egg production.

5.
Int J Mol Sci ; 25(6)2024 Mar 16.
Article in English | MEDLINE | ID: mdl-38542342

ABSTRACT

Honey bees have a very interesting phenomenon where the larval diets of two different honey bee species are exchanged, resulting in altered phenotypes, namely, a honey bee nutritional crossbreed. This is a classical epigenetic process, but its underlying mechanisms remain unclear. This study aims to investigate the contribution of DNA methylation to the phenotypic alternation of a Apis mellifera-Apis cerana nutritional crossbreed. We used a full nutritional crossbreed technique to rear A. cerana queens by feeding their larvae with A. mellifera royal-jelly-based diets in an incubator. Subsequently, we compared genome-wide methylation sequencing, body color, GC ratio, and the DMRs between the nutritional crossbreed, A. cerana queens (NQs), and control, A. cerana queens (CQs). Our results showed that the NQ's body color shifted to yellow compared to the black control queens. Genome methylation sequencing revealed that NQs had a much higher ratio of mCG than that of CQs. A total of 1020 DMGs were identified, of which 20 DMGs were enriched into key pathways for melanin synthesis, including tryptophan, tyrosine, dopamine, and phenylalanine KEGG pathways. Three key differentially methylated genes [OGDH, ALDH(NAD+) and ALDH7] showed a clear, altered DNA methylation in multiple CpG islands in NQs compared to CQs. Consequently, these findings revealed that DNA methylation participates in A. cerana-A. mellifera nutritional crossbreeding as an important epigenetic modification. This study serves as a model of cross-kingdom epigenetic mechanisms in insect body color induced by environmental factors.


Subject(s)
DNA Methylation , Fatty Acids , Genome , Bees/genetics , Animals , Larva/genetics , Epigenesis, Genetic
6.
Int J Mol Sci ; 24(7)2023 Mar 25.
Article in English | MEDLINE | ID: mdl-37047189

ABSTRACT

Honey bees are important species for the study of epigenetics. Female honey bee larvae with the same genotype can develop into phenotypically distinct organisms (sterile workers and fertile queens) depending on conditions such as diet. Previous studies have shown that DNA methylation and histone modification can establish distinct gene expression patterns, leading to caste differentiation. It is unclear whether the histone methylation modification H3K4me1 can also impact caste differentiation. In this study, we analyzed genome-wide H3K4me1 modifications in both queen and worker larvae and found that H3K4me1 marks are more abundant in worker larvae than in queen larvae at both the second and fourth instars, and many genes associated with caste differentiation are differentially methylated. Notably, caste-specific H3K4me1 in promoter regions can direct worker development. Thus, our results suggest that H3K4me1 modification may act as an important regulatory factor in the establishment and maintenance of caste-specific transcriptional programs in honey bees; however, the potential influence of other epigenetic modifications cannot be excluded.


Subject(s)
DNA Methylation , Epigenesis, Genetic , Bees/genetics , Female , Animals , Larva/metabolism , Genotype , Diet
7.
Nutrients ; 15(2)2023 Jan 14.
Article in English | MEDLINE | ID: mdl-36678306

ABSTRACT

C. oleifera is an economically important oilseed crop and medical plant. However, as a characteristic honey resource, the standard protocol used to identify the composition of C. oleifera honey has not been established yet. Previously, distinctive flavonoid has been shown as an effective marker to trace the botanical origin of honey. In this study, we examined the flavonoid types in C. oleifera honey and nine other monofloral honeys by using liquid chromatography tandem-mass spectrometry (LC-MS/MS) and compared the differences and identified eight distinct flavonoids in C. oleifera honey. Then, comparing the 8 flavonoids with the 14 flavonoids common to C. oleifera honey and nectar, two distinct flavonoids were identified in C. oleifera honey and nectar. Finally, we identified kaempferitrin as the distinct flavonoid marker in C. oleifera honey using the degree of influence of the partial least-squares discriminant analysis (PLS-DA) model on C. oleifera honey and ployfloral honey.


Subject(s)
Honey , Honey/analysis , Flavonoids/chemistry , Plant Nectar , Chromatography, Liquid , Chromatography, High Pressure Liquid/methods , Tandem Mass Spectrometry
8.
Sci Total Environ ; 858(Pt 3): 160146, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36375554

ABSTRACT

Several pyrethroids (such as flumethrin and fluvalinate) with low toxicity to honey bees and comparable high toxicity to mites are used worldwide as acaricides. However, flumethrin has been used for a long time in colonies to control Varroa destructor and the honey bees might be exposed to flumethrin cumulatively, which could affect the health of honey bee colonies. This study evaluated the potential adverse effects of direct flumethrin exposure on worker bees under laboratory and colony conditions. Under laboratory conditions, downregulation of genes related to immune was observed when worker bees were exposed to flumethrin above 1/16 LD50; at levels above 1/8 LD50, olfactory learning was impaired, and genes related to learning memory were downregulated; and at >1/4 LD50, their lifespan was shortened. Monitoring with radio frequency identification (RFID) revealed that worker bees in a colony exposed to flumethrin above 1/8 LD50 had a shortened lifespan and reduced foraging ability. When worker bees are exposed to >1/4 LD50 of flumethrin, it can lead to excessive rest day behavior. These results indicate that applying flumethrin in colonies may pose a severe health risk to honey bees and reveal the urgent need to develop non-toxic and highly effective acaricides.


Subject(s)
Bees , Animals
9.
J Agric Food Chem ; 70(41): 13176-13185, 2022 Oct 19.
Article in English | MEDLINE | ID: mdl-36214176

ABSTRACT

Identifying the components of Camellia oleifera honey and pollen and conducting corresponding toxicological tests are essential to revealing the mechanism of Camellia oleifera toxicity to honey bees. In this research, we investigated the saccharides and alkaloids in honey, nectar, and pollen from Camellia oleifera, which were compared with honey, nectar, and pollen from Brassica napus, a widely planted flowering plant. The result showed that melibiose, manninotriose, raffinose, stachyose, and lower amounts of santonin and caffeine were found in Camellia oleifera nectar, pollen, and honey but not in B. napus nectar, pollen, and honey. Toxicological experiments indicated that manninotriose, raffinose, and stachyose in Camellia oleifera honey are toxic to bees, while alkaloids in Camellia oleifera pollen are not toxic to honey bees. The toxicity mechanism of oligosaccharides revealed by temporal metabolic profiling is that oligosaccharides cannot be further digested by honey bees and thus get accumulated in honey bees, disturbing the synthesis and metabolism of trehalose, ultimately causing honey bee mortality.


Subject(s)
Camellia , Santonin , Bees , Animals , Plant Nectar , Raffinose , Melibiose , Trehalose , Caffeine , Pollen , Oligosaccharides
10.
Life (Basel) ; 12(10)2022 Oct 19.
Article in English | MEDLINE | ID: mdl-36295077

ABSTRACT

The technology of long reads substantially improved the contingency of the genome assembly, particularly resolving contiguity of the repetitive regions. By integrating the interactive fragment using Hi-C, and the HiFi technique, a solid genome of the honeybee Apis mellifera carnica was assembled at the chromosomal level. A distinctive pattern of genes involved in social evolution was found by comparing it with social and solitary bees. A positive selection was identified in genes involved with cold tolerance, which likely underlies the adaptation of this European honeybee subspecies in the north hemisphere. The availability of this new high-quality genome will foster further studies and advances on genome variation during subspeciation, honeybee breeding and comparative genomics.

11.
Insects ; 13(10)2022 Oct 13.
Article in English | MEDLINE | ID: mdl-36292876

ABSTRACT

RNA interference (RNAi) has been used successfully to reduce target gene expression and induce specific phenotypes in several species. It has proved useful as a tool to investigate gene function and has the potential to manage pest populations and reduce disease pathogens. However, it is not known whether different administration methods are equally effective at interfering with genes in bees. Therefore, we compared the effects of feeding and injection of small interfering RNA (siRNA) on the messenger RNA (mRNA) levels of alpha-aminoadipic semialdehyde dehydrogenase (ALDH7A1), 4-coumarate-CoA ligase (4CL), and heat shock protein 70 (HSP70). Both feeding and injection of siRNA successfully knocked down the gene but feeding required more siRNA than the injection. Our results suggest that both feeding and injection of siRNA effectively interfere with brain genes in bees. The appropriateness of each method would depend on the situation.

12.
Insects ; 13(5)2022 May 23.
Article in English | MEDLINE | ID: mdl-35621820

ABSTRACT

Honey bees, rather than rear queens with eggs and larvae from worker cells, prefer to rear new queens with eggs form queen cells, if available. This may be a result of long-term evolutionary process for honey bee colonies. However, the exact mechanism of this phenomenon is unclear. In this study, queens were reared with eggs from queen cells (F1-QE), eggs from worker cells (F1-WE), and two-day-old larvae from worker cells (F1-2L). Physiological indexes and the expression of the development-related genes ((Hexamerin (Hex110, Hex70b), Transferrin (Trf), and Vitellogenin (Vg)) of reared F1 generation queens were measured and compared. Furthermore, F2 generation queens were reared with one-day-old larvae from F1 queens, and the weight and ovariole count of reared F2 generation daughter queens were examined. Meanwhile, the expression of the development- and reproduction-related genes (Hex110, Hex70b, Trf, Vg, and Juvenile Hormone (Jh)) and immune detoxication-related genes (Hymenoptaecin, Abeacin, and CytP450) of reared F2 queens were further explored. We found that the F1-QE queens had the highest physiological indexes and higher Hex110 and Trf expression levels, while no significant difference was found in the expression of Hex70b and Vg among the three groups of F1 queens. In addition, the reared queens of F2-QE had the highest quality, with the highest development, reproduction, immune-detoxication genes' expression levels. Our results revealed that the quality of reared offspring queens from high-quality mother queens was also high. These findings inform methods for rearing high-quality queens and highlight that a high-quality queen is essential for offspring colony growth and survival.

13.
Environ Res ; 203: 111836, 2022 01.
Article in English | MEDLINE | ID: mdl-34352230

ABSTRACT

Fluvalinate has been heavily used to control the pest Varroa destructor and residues in honeybee colony causing long-term exposure threat for bees. But, little is known about the lifetime trips and homing ability of worker bees under fluvalinate stresses during the development period. In this study, honeybees from 2-day-old larvae to 7-day-old adults were continuously fed with different concentrations of fluvalinate (0, 0.5, 5 and 50 mg/kg) and the effects of fluvalinate on the development of larvae were examined. And then, all the treated bees were reintroduced into the original source colony and were monitored, and the homing ability of 20 days old bees at 1000 and 2000 m away from the beehive were tested using the radio frequency identification (RFID). We found that fluvalinate significantly activates the superoxide dismutase (SOD) activities of larvae and 5 mg/kg fluvalinate reduced the homing rate of workers at 2000 m away from colony. 50 mg/kg fluvalinate reduced proportion of capped worker cells, activated Cytochrome P450 (CYP450) activity of larvae, affected the foraging times, influenced the homing rate and homing time of one trip at 2000 m away from colony. Our results showed that the larvae can activate the activities of SOD and detoxification enzymes in detoxification of fluvalinate and reduce the influence on honeybees. But, when the concentration is higher than 5 mg/kg fluvalinate, it is difficult for bees to detoxify fluvalinate completely, which affect the homing rate. The results reflect the potential risk for honeybees in the development stage continuously exposed to fluvalinate.


Subject(s)
Pyrethrins , Animals , Bees , Larva , Nitriles , Pyrethrins/toxicity
14.
Int Orthop ; 44(11): 2437-2442, 2020 11.
Article in English | MEDLINE | ID: mdl-32654056

ABSTRACT

PURPOSE: To assess the feasibility and effectiveness of retrograde intramedullary nail (RIN) revision surgeries for locking compression plate (LCP) failure in distal femoral fractures. METHODS: This retrospective study included 13 patients who suffered from metalwork failures after they initially underwent open reduction and LCP fixation. In patients who eventually underwent RIN revision from January 2014 to December 2016, range of motion (ROM) and Hospital for Special Surgery (HSS) scores obtained before surgery and at the final follow-up time were analysed. RESULTS: The average operative time was 155 minutes (range, 120-210 minutes), and the average blood loss volume was 650 ml (range, 200-1350 ml). There were two cases of complications (15.38%): one was calf muscle vein thrombosis, and the other was a superficial infection. No deep tissue infection or deep vein thrombosis was observed post-operatively. The average follow-up time was 16 months (range, 12-24 months). All fractures healed in a mean of 6.5 months (range, 4-12 months), and one patient underwent an additional bone graft surgery that did not involve a bone graft during the RIN revision operation (this eventually healed at 12 months post-operatively). The mean ROM before the operation was 86.92 ± 12.34°. At the final follow-up, the mean ROM was 112.69 ± 9.27°. There was a significant difference between pre-operative and post-operative ROM (P < 0.01). The mean HSS score improved significantly from 38.85 ± 9.62 points pre-operatively to 79.62 ± 5.42 points post-operatively. There was a significant difference between pre-operative and post-operative HSS scores (P < 0.01). CONCLUSIONS: RIN revision surgery achieved excellent clinical results in patients with LCP failure.


Subject(s)
Femoral Fractures , Fracture Fixation, Intramedullary , Bone Nails , Bone Plates , Femoral Fractures/surgery , Fracture Fixation, Internal/adverse effects , Fracture Fixation, Intramedullary/adverse effects , Fracture Healing , Humans , Retrospective Studies , Treatment Outcome
15.
Front Genet ; 11: 279, 2020.
Article in English | MEDLINE | ID: mdl-32292419

ABSTRACT

Apis cerana is one of the main honeybee species in artificial farming, which is widely distributed in Asian countries. The genome of A. cerana has been sequenced by several different research groups using second generation sequencing technologies. However, it is still necessary to obtain more complete and accurate genome sequences. Here we present a chromosome-scale assembly of the A. cerana genome using single-molecule real-time (SMRT) Pacific Biosciences sequencing and high-throughput chromatin conformation capture (Hi-C) genome scaffolding. The updated assembly is 215.67 Mb in size with a contig N50 of 4.49 Mb, representing an 212-fold improvement over the previous Illumina-based version. Hi-C scaffolding resulted in 16 pseudochromosomes occupying 97.85% of the assembled genome sequences. A total of 10,741 protein-coding genes were predicted and 9,627 genes were annotated. Besides, 314 new genes were identified compared to the previous version. The improved high-quality A. cerana reference genome will provide precise sequence information for biological research of A. cerana.

16.
Insect Sci ; 26(3): 499-509, 2019 Jun.
Article in English | MEDLINE | ID: mdl-29110379

ABSTRACT

Honeybees (Apis mellifera) have haplodiploid sex determination: males develop from unfertilized eggs and females develop from fertilized ones. The differences in larval food also determine the development of females. Here we compared the total somatic gene expression profiles of 2-day and 4-day-old drone, queen and worker larvae by RNA-Seq. The results from a co-expression network analysis on all expressed genes showed that 2-day-old drone and worker larvae were closer in gene expression profiles than 2-day-old queen larvae. This indicated that for young larvae (2-day-old) environmental factors such as larval diet have a greater effect on gene expression profiles than ploidy or sex determination. Drones had the most distinct gene expression profiles at the 4-day larval stage, suggesting that haploidy, or sex dramatically affects the gene expression of honeybee larvae. Drone larvae showed fewer differences in gene expression profiles at the 2-day and 4-day time points than the worker and queen larval comparisons (598 against 1190 and 1181), suggesting a different pattern of gene expression regulation during the larval development of haploid males compared to diploid females. This study indicates that early in development the queen caste has the most distinct gene expression profile, perhaps reflecting the very rapid growth and morphological specialization of this caste compared to workers and drones. Later in development the haploid male drones have the most distinct gene expression profile, perhaps reflecting the influence of ploidy or sex determination on gene expression.


Subject(s)
Bees/genetics , Transcriptome , Animals , Bees/growth & development , Bees/metabolism , Female , Gene Expression Profiling , Larva/metabolism , Male , Sequence Analysis, RNA , Sex Characteristics , Social Dominance
17.
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi ; 32(2): 139-144, 2018 02 15.
Article in Chinese | MEDLINE | ID: mdl-29806401

ABSTRACT

Objective: To evaluate the feasibility and effectiveness of percutaneous cannulated screw fixation for the treatment of Day type Ⅱ pelvic crescent fracture. Methods: The clinical data of 14 patients with Day type Ⅱ pelvic crescent fractures underwent closed reduction and percutaneous cannulated screw fixation between January 2009 and July 2016 were retrospectively analysed. There were 9 males and 5 females, aged 17-65 years (mean, 38 years). The causes of injury included traffic accident in 8 cases, falling from height in 3 cases, bruise injury in 3 cases; all were closed fractures. According to Tile classification, there were 8 cases of type B, 6 cases of type C. There were 13 cases combined with fracture of the anterior pelvic ring, including 8 cases of superior and inferior ramus of pubis fracture, 1 case of superior ramus of pubis fracture with symphysis separation, and 4 cases of symphysis separation. The interval of injury and admission was 1- 72 hours (mean, 16 hours), and the interval of injury and operation was 3-8 days (mean, 5 days). After operation, the reduction of fracture was evaluated by the Matta evaluation criteria, the clinical function was assessed by Majeed function assessment. Results: The operation time was 35-95 minutes (mean, 55 minutes), cumulative C-arm fluoroscopy time was 3-8 minutes (mean, 5 minutes), no iatrogenic vascular injury and pelvic organ damage occurred. Postoperative X-ray films at 2 days indicated that 2 cases of vertical shift and 2 cases of mild rotation were not completely corrected. Postoperative CT examination at 3 days indicated that 2 pubic joint screws broke through the obturator bone cortex. None of the pubic ramus screws entered into the acetabulum, but a screw of superior pubic branch broke through the posterior cortical of superior pubic branch, a screw of posterior ilium column broke through the medial bone cortex of the ilium, and no clinical symptom was observed. One patient suffered from wound infection in the pubic symphysis, then healed after 2 weeks of wound drainage, the other wounds healed by first intention. According to Matta criterion for fracture reduction, the results were excellent in 9 cases, good in 4 cases, and fair in 1 case with an excellent and good rate of 92.9%. All patients were followed up 8-24 months (mean, 14 months). All fractures healed at 4 months and restored to the normal walking at 6 months after operation, 3 patients suffered from slight pain in the sacroiliac joints and slight claudication when they were tired or walked for a long time and unnecessary for special treatment. One patient felt pain in the back of the iliac spine when he was lying down. During the follow-up, no screw loosening or other internal fixation failure occurred. At last follow-up, according to Majeed functional evaluation criteria, the results were excellent in 7 cases, good in 5 cases, and fair in 2 cases with an excellent and good rate of 85.7%. Conclusion: The percutaneous cannulated screw fixation is a safe treatment for Day type Ⅱ pelvic crescent fracture, which has a reliable fixation and good effectiveness.


Subject(s)
Bone Screws , Fracture Fixation, Internal/methods , Fractures, Bone/surgery , Fractures, Closed/surgery , Pelvic Bones/injuries , Accidental Falls , Adolescent , Adult , Aged , Contusions , Female , Fluoroscopy , Fractures, Bone/classification , Humans , Male , Middle Aged , Neck Injuries , Pubic Symphysis , Retrospective Studies , Sacroiliac Joint/surgery , Spinal Fractures , Treatment Outcome , Young Adult
18.
BMC Dev Biol ; 18(1): 11, 2018 04 13.
Article in English | MEDLINE | ID: mdl-29653508

ABSTRACT

BACKGROUND: Honeybee development consists of four stages: embryo, larva, pupa and adult. Embryogenesis, a key process of cell division and differentiation, takes 3 days in honeybees. However, the embryonic transcriptome and the dynamic regulation of embryonic transcription are still largely uncharacterized in honeybees, especially in the Asian honeybee (Apis cerana). Here, we employed high-quality RNA-seq to explore the transcriptome of Asian honeybee embryos at three ages, approximately 24, 48 and 72 h (referred to as Day1, Day2 and Day3, respectively). RESULTS: Nine embryo samples, three from each age, were collected for RNA-seq. According to the staging scheme of honeybee embryos and the morphological features we observed, our Day1, Day2 and Day3 embryos likely corresponded to the late stage four, stage eight and stage ten development stages, respectively. Hierarchical clustering and principal component analysis showed that same-age samples were grouped together, and the Day2 samples had a closer relationship with the Day3 samples than the Day1 samples. Finally, a total of 18,284 genes harboring 55,646 transcripts were detected in the A. cerana embryos, of which 44.5% consisted of the core transcriptome shared by all three ages of embryos. A total of 4088 upregulated and 3046 downregulated genes were identified among the three embryo ages, of which 2010, 3177 and 1528 genes were upregulated and 2088, 2294 and 303 genes were downregulated from Day1 to Day2, from Day1 to Day3 and from Day2 to Day3, respectively. The downregulated genes were mostly involved in cellular, biosynthetic and metabolic processes, gene expression and protein localization, and macromolecule modification; the upregulated genes mainly participated in cell development and differentiation, tissue, organ and system development, and morphogenesis. Interestingly, several biological processes related to the response to and detection of light stimuli were enriched in the first-day A. cerana embryogenesis but not in the Apis mellifera embryogenesis, which was valuable for further investigations. CONCLUSIONS: Our transcriptomic data substantially expand the number of known transcribed elements in the A. cerana genome and provide a high-quality view of the transcriptome dynamics of A. cerana embryonic development.


Subject(s)
Bees/embryology , Bees/genetics , Embryonic Development/genetics , Sequence Analysis, RNA/methods , Transcriptome/genetics , Animals , Embryo, Nonmammalian/metabolism , Gene Expression Profiling , Gene Expression Regulation, Developmental , Gene Ontology , Molecular Sequence Annotation , Principal Component Analysis , Transcription, Genetic
19.
Arch Environ Contam Toxicol ; 75(1): 59-65, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29423537

ABSTRACT

Pesticides are considered one of the major contemporary stressors of honey bee health. In this study, the effects of short-term exposure to lambda-cyhalothrin on lifespan, learning, and memory-related characteristics of Apis mellifera were systematically examined. Short-term exposure to lambda-cyhalothrin in worker bees reduced lifespan, affected learning and memory performance, reduced the homing ability, and influenced the expression levels of two learning and memory-related genes of A. mellifera. This research identifies the nature of the sublethal effects of lambda-cyhalothrin on bees and the level of exposure that can be harmful to bee health. This new information will assist in establishing guidelines for the safe use of lambda-cyhalothrin in the field.


Subject(s)
Bees/drug effects , Bees/physiology , Insecticides/toxicity , Nitriles/toxicity , Pyrethrins/toxicity , Animals , Dose-Response Relationship, Drug , Environmental Exposure/adverse effects , Gene Expression Regulation/drug effects , Homing Behavior/drug effects , Insecticides/administration & dosage , Memory/drug effects , Memory/physiology , Nitriles/administration & dosage , Pyrethrins/administration & dosage , Survival Rate
20.
Yi Chuan ; 40(2): 155-161, 2018 Feb 20.
Article in English | MEDLINE | ID: mdl-29428908

ABSTRACT

Tyramine is a biological polyamine, which serves important functions as neurotransmitters, neuromodulators and neurohormone of the central nervous system. It participates in the regulation of various behavior and physiological processes in insects. For example, tyramine and its receptor genes are involved in the regulation of learning and memory in the animals. In this study, the full-length cDNA sequences of the tyramine receptor genes (Actyr1 and Actyr2) of the Chinese honeybee, Apis cerana cerana, were cloned and sequenced for the first time. Their expression patterns were examined in different tissues by qRT-PCR and localized in the head by in situ hybridization with digoxigenin (DIG)-labeled RNA probes. The full-length cDNAs of Actyr1 and Actyr2 are 1241 bp (GenBank accession no. KC814693) and 1270 bp (GenBank accession no.KC814693) in length and encode 297 amino acids and 399 amino acids, respectively. qRT-PCR results showed that the expression levels of both Actyr1 and Actyr2 were the highest in the head, followed by the abdomen, then the antennae and the lowest in the thorax. The expression level in the head was significantly higher than that in other tissues. Moreover, in situ hybridization showed that the expression of Actyr1 and Actyr2 genes were mainly localized to the Kenyon cells of the mushroom bodies and cells around the antennal lobes. These observations suggest that some interactions between these two genes in certain cells could be important in regulating various biological functions, such as learning and memory, in the honeybee.


Subject(s)
Bees/genetics , Gene Expression Profiling , Insect Proteins/genetics , Receptors, Biogenic Amine/genetics , Animals , Brain/metabolism , Cloning, Molecular , DNA, Complementary/chemistry , DNA, Complementary/genetics , In Situ Hybridization , Insect Proteins/classification , Mushroom Bodies/metabolism , Phylogeny , Protein Isoforms/genetics , Receptors, Biogenic Amine/classification , Reverse Transcriptase Polymerase Chain Reaction , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...