Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Pharmacol ; 12: 748501, 2021.
Article in English | MEDLINE | ID: mdl-34690779

ABSTRACT

The present study determines the potential antioxidants in Moutan Cortex (MC) and predicts its targets of anti-oxidative activities. The quantitative analysis and the free radical scavenging assays were conducted to detect the main components in MC and assess its anti-oxidant activities. The grey relational analysis and the network pharmacology approach were employed to predict its key components and targets of anti-oxidant activities. Six main constitutes in MCs were quantified by high performance liquid chromatography (HPLC) and its anti-oxidant activities were evaluated by DPPH and ABTS free radical scavenging methods. Then grey relational analysis was employed to predict the key components acting on anti-oxidative activity based on the chem-bio results. The predicted components and its mechanisms on anti-oxidation were uncovered by network pharmacology approach and cell test, respectively. The content of paeonol and paeoniflorin accounts for more than 80% the whole content of detected components. However, the two main ingredients showed a great variety among MCs. The antioxidant capacities of MCs also showed a great discrepancy based on DPPH and ABTS methods. The key components acting on anti-oxidation were identified to be paeonol, gallic acid and benzoylpaeoniflorin, and their potential therapeutic targets were predicted and verified, respectively. The present results reveal that MC has a significant antioxidant activity and the compounds of paeonol, gallic acid and benzoylpaeoniflorin could be considered as the promising antioxidant candidates with the property of suppressing oxidative stress and apoptosis.

2.
Sensors (Basel) ; 19(1)2019 Jan 08.
Article in English | MEDLINE | ID: mdl-30626036

ABSTRACT

A highly sensitive directional bending sensor based on a three-core fiber (TCF) Mach-Zehnder interferometer (MZI) is presented in this study. This MZI-based bending sensor was fabricated by fusion-splicing a section of TCF between two single-mode fibers (SMF) with core-offset. Due to the location of the core in the TCF, a bend applied to the TCF-based MZI led to an elongation or shortening of the core, which makes the sensor suitable for directional bending measurement. To analyze the bending characteristics, two types of TCF-based sensors, with the fusion-spliced core located at different positions between the SMFs, were investigated. A swept source was employed in the measurement technique. The experimental results showed that, for the two types of sensors in this setup, the bending sensitivities of the two sensors were 15.36 nm/m-1 and 3.11 nm/m-1 at the bending direction of 0°, and -20.48 nm/m-1 and -5.29 nm/m-1 at the bending direction of 180°. The temperature sensitivities of the two sensors were 0.043 nm/°C and 0.041 nm/°C, respectively. The proposed sensors are compact, versatile, inexpensive to fabricate, and are expected to have potential applications in biomedical sensing.

SELECTION OF CITATIONS
SEARCH DETAIL
...