Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Antioxidants (Basel) ; 13(4)2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38671915

ABSTRACT

Ocular exposure to particulate matter (PM) causes local inflammation; however, the influence of neutrophils on PM-induced ocular inflammation is still not fully understood. In this study, we constructed a system to investigate the role of PM in ocular inflammation using a co-culture of human corneal epithelial cells (HCE-T) and differentiation-induced neutrophils (dHL-60). To investigate whether HCE-T directly endocytosed PM, we performed a holographic analysis, which showed the endocytosis of PM in HCE-T. The cytokines and chemokines produced by HCE-T were measured using an ELISA. HCE-T treated with PM produced IL-6 and IL-8, which were inhibited by N-Acetyl-L-cysteine (NAC), suggesting the involvement of ROS. Their co-culture with dHL-60 enhanced their production of IL-6, IL-8, and MCP-1. This suggests an inflammatory loop involving intraocular corneal epithelial cells and neutrophils. These cytokines and chemokines are mainly regulated by NF-κB. Therefore, this co-culture system was examined in the presence of an IKK inhibitor known to downregulate NF-κB activity. The IKK inhibitor dramatically suppressed the production of these factors in co-culture supernatants. The results suggest that the inflammatory loop observed in the co-culture is mediated through ROS and the transcription factor NF-κB. Thus, the co-culture system is considered a valuable tool for analyzing complex inflammations.

2.
Int J Mol Sci ; 24(10)2023 May 20.
Article in English | MEDLINE | ID: mdl-37240384

ABSTRACT

Neutrophil energy metabolism during phagocytosis has been previously reported, and adenosine triphosphate (ATP) plays a crucial role in endocytosis. Neutrophils are prepared by intraperitoneal injection of thioglycolate for 4 h. We previously reported a system established for measuring particulate matter endocytosis by neutrophils using flow cytometry. In this study, we utilized this system to investigate the relationship between endocytosis and energy consumption in neutrophils. A dynamin inhibitor suppressed ATP consumption triggered by neutrophil endocytosis. In the presence of exogenous ATP, neutrophils behave differently during endocytosis depending on ATP concentration. The inhibition of ATP synthase and nicotinamide adenine dinucleotide phosphate oxidase but not phosphatidylinositol-3 kinase suppresses neutrophil endocytosis. The nuclear factor kappa B was activated during endocytosis and inhibited by I kappa B kinase (IKK) inhibitors. Notably, IKK inhibitors restored endocytosis-triggered ATP consumption. Furthermore, data from the NLR family pyrin domain containing three knockout mice suggest that inflammasome activation is not involved in neutrophil endocytosis or concomitant ATP consumption. To summarize, these molecular events occur via endocytosis, which is closely related to ATP-centered energy metabolism.


Subject(s)
Adenosine Triphosphate , Neutrophils , Mice , Animals , Neutrophils/metabolism , Adenosine Triphosphate/metabolism , Endocytosis , Phagocytosis , I-kappa B Proteins/metabolism , Inflammasomes/metabolism , Mice, Knockout , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism
3.
Technol Health Care ; 31(S1): 169-184, 2023.
Article in English | MEDLINE | ID: mdl-37038790

ABSTRACT

BACKGROUND: The pandemic caused by the novel coronavirus disease (COVID-19) since early 2020 is one of the most significant global health issues in history. Although there is currently no specific treatment for COVID-19, researchers have provided a whole array of potential treatments, both from the Western medicine approach, which is molecular target and pathogenesis based, and from the traditional Chinese medicine (TCM) approach, which is based on the exposure to toxins/pathogens and the balance of the body to combat them for recovery. OBJECTIVE: The aim of this research is to find combinations of Western medicine and TCM that may offer better therapeutic efficacy synergystically with a better adverse events profile. The findings of the research may provide a new insight in the development of the treatment of COVID-19. METHODS: From the Western medicine perspective, drugs target the mechanisms of viral infection, including the stages of viral entry (Arbidol, Camostat Mesylate, Convalescent Plasma therapy) and viral replication (Lopinavir/Ritonavir, Redemsivir, Ribavirin). Additional therapies target host defenses, preventing cytokine storms (Tocilizumab) and stimulating the immune system (Interferons). On the other hand, TCM also proposed a number of treatment methods for COVID-19 with new scientific approaches identifying their antiviral and immunomodulatory activities. The novel combination of Western medicine and TCM can be proposed by analyzing their respective molecular targets. RESULTS: Although TCM is not generally accepted in the Western community because of the general lack of knowledge on their detailed mechanisms, studies and clinical trials suggest that TCM could be beneficial in combating COVID-19. CONCLUSION: Based on the principle of combining TCM and Western medicine, two combinations are tested effective in clinical trials, and three possible combinations that might be effective are proposed in the paper.


Subject(s)
COVID-19 , Drugs, Chinese Herbal , Humans , Medicine, Chinese Traditional/methods , Drugs, Chinese Herbal/therapeutic use , COVID-19 Drug Treatment , COVID-19 Serotherapy
4.
Transl Vis Sci Technol ; 12(6): 14, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-38752575

ABSTRACT

Purpose: To establish an inducible model of retinal ischemia/reperfusion injury (RI/RI) in nonhuman primates (NHPs) to improve our understanding of the disease conditions and evaluate treatment interventions in humans. Methods: We cannulated the right eye of rhesus macaques with a needle attached to a normal saline solution reservoir at up to 1.9 m above the eye level that resulted in high intraocular pressure of over 100 mm Hg for 90 minutes. Retinal morphology and function were monitored before and after RI/RI over two months by fundus photography, optical coherence tomography, electroretinography, and visual evoked potential. Terminal experiments involved immunostaining for retinal ganglion cell marker Brn3a, glial fibrillary acidic protein, and quantitative polymerase chain reaction to assess retinal inflammatory biomarkers. Results: We observed significant and progressive declines in retinal and retinal nerve fiber layer thickness in the affected eye after RI/RI. We noted significant reductions in amplitudes of electroretinography a-wave, b-wave, and visual evoked potential N2-P2, with minimal recovery at 63 days after injury. Terminal experiments conducted two months after injury revealed ∼73% loss of retinal ganglion cells and a fivefold increase in glial fibrillary acid protein immunofluorescence intensity compared to the uninjured eyes. We observed marked increases in tumor necrosis factor-alpha, interferon-gamma, interleukin-1beta, and inducible nitric oxide synthase in the injured retinas. Conclusions: The results demonstrated that the pathophysiology observed in the NHP model of RI/RI is comparable to that of human diseases and suggest that the NHP model may serve as a valuable tool for translating interventions into viable treatment approaches. Translational Relevance: The model serves as a useful platform to study potential interventions and treatments for RI/RI or blinding retinal diseases.


Subject(s)
Disease Models, Animal , Electroretinography , Evoked Potentials, Visual , Macaca mulatta , Reperfusion Injury , Retinal Ganglion Cells , Tomography, Optical Coherence , Animals , Reperfusion Injury/metabolism , Reperfusion Injury/pathology , Reperfusion Injury/physiopathology , Evoked Potentials, Visual/physiology , Retinal Ganglion Cells/pathology , Retinal Ganglion Cells/metabolism , Glial Fibrillary Acidic Protein/metabolism , Retinal Diseases/metabolism , Retinal Diseases/pathology , Retinal Diseases/physiopathology , Retina/pathology , Retina/metabolism , Retina/physiopathology , Male , Transcription Factor Brn-3A/metabolism , Female
5.
Appl Opt ; 61(20): 6038-6045, 2022 Jul 10.
Article in English | MEDLINE | ID: mdl-36255840

ABSTRACT

Using an ultra-high-energy (γ⩾1000) electron to collide with laser pulses to generate high-energy γ-rays is an important way to treat cancer. We investigate a method for modulating high-energy γ-rays with higher energy and more collimation using tightly focused circularly polarized laser pulses colliding with an ultra-high-energy electron. Theoretical derivation and numerical simulation within the framework of classical electrodynamics show that higher electron initial energy, stronger laser intensity, and a longer pulse can generate higher γ-ray energy. The high-energy γ-rays generated by an electron with higher initial energies are more collimated. The increase of the laser intensity and the increase of the pulse width will increase the angular range of the high-energy γ-rays. At the same time, the phenomenon of the "jumping point," in which the radiation energy varies with the laser intensity, was found. Our findings have important implications for modulating better high-energy γ-ray sources.

6.
Med Oncol ; 39(8): 118, 2022 Jun 08.
Article in English | MEDLINE | ID: mdl-35674939

ABSTRACT

We investigated the antitumor effects of oleanolic acid (OA) and ursolic acid (UA) on adult T-cell leukemia cells. OA and UA dose-dependently inhibited the proliferation of adult T-cell leukemia cells. UA-treated cells showed caspase 3/7 and caspase 9 activation. PARP cleavage was detected in UA-treated MT-4 cells. Activation of mTOR and PDK-1 was inhibited by UA. Autophagosomes were detected in MT-4 cells after UA treatment using electron microscopy. Consistently, mitophagy was observed in OA- and UA-treated MT-4 cells by confocal microscopy. The mitochondrial membrane potential in MT-4 cells considerably decreased, and mitochondrial respiration and aerobic glycolysis were significantly reduced following UA treatment. Furthermore, MT-1 and MT-4 cells were sorted into two regions based on their mitochondrial membrane potential. UA-treated MT-4 cells from both regions showed high activation of caspase 3/7, which were inhibited by Z-vad. Interestingly, MT-4 cells cocultured with sorted UA-treated cells showed enhanced proliferation. Finally, UA induced cell death and ex vivo PARP cleavage in peripheral blood mononuclear cells from patients with adult T-cell leukemia. Therefore, UA-treated MT-4 cells show caspase activation following mitochondrial dysfunction and may produce survival signals to the surrounding cells.


Subject(s)
Antineoplastic Agents, Phytogenic , Leukemia-Lymphoma, Adult T-Cell , Oleanolic Acid , Triterpenes , Antineoplastic Agents, Phytogenic/pharmacology , Apoptosis , Caspase 3/metabolism , Cell Line, Tumor , Cell Proliferation , Humans , Leukemia-Lymphoma, Adult T-Cell/drug therapy , Leukemia-Lymphoma, Adult T-Cell/metabolism , Leukocytes, Mononuclear/metabolism , Mitochondria/metabolism , Oleanolic Acid/metabolism , Oleanolic Acid/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Triterpenes/metabolism , Triterpenes/pharmacology , Ursolic Acid
7.
Plant Methods ; 15: 8, 2019.
Article in English | MEDLINE | ID: mdl-30733820

ABSTRACT

BACKGROUND: Plant root apex is the major part to direct the root growth and development by responding to various signals/cues from internal and soil environments. To study and understand root system biology particularly at a molecular and cellular level, an Arabidopsis T-DNA insertional enhancer trap line J3411 expressing reporters (GFP) only in the root tip was adopted in this study to isolate a DNA fragment. RESULTS: Using nested PCR, DNA sequencing and sequence homology search, the T-DNA insertion site(s) and its flanking genes were characterised in J3411 line. Subsequently, a 2000 bp plant DNA-fragment (Ertip1) upstream of the insert position of the coding T-DNA was in silico analysed, revealing certain putative promoter/enhancer cis-regulatory elements. Cloning and transformation of this DNA fragment and its truncated segments tagged with or without 35S minimal promoter (35Smini), all of which were fused with a GFP or GUS reporter, allowed to detect GFP and GUS expression mediated only by Ertip1 + 35mini (PErtip1+35Smini) specifically in the Arabidopsis root tip region. The PErtip1+35Smini activity was further tested to be strong and stable under many different growth conditions but suppressed by cold, salt, alkaline pH and higher ammonium and phosphorus. CONCLUSION: This work describes a promising strategy to isolate a tissue-/cell-specific enhancer sequence from the enhancer trap lines, which are publically available. The reported synthetic promoter i.e. PErtip1+35Smini may provide a valuable and potent molecular-tool for comprehensive investigation of a gene function related to root growth and development as well as molecular engineering of root-architectural formation aiming to improve plant growth.

8.
EBioMedicine ; 36: 436-445, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30316866

ABSTRACT

BACKGROUND: Although dysfunction of amygdala-related circuits is centrally implicated in major depressive disorder (MDD), little is known about how this dysfunction differs between adult and adolescent MDD patients. METHODS: Voxel-wise meta-analyses of abnormal amygdala resting-state functional connectivity (rsFC) were conducted in adult and adolescent groups separately, followed by a quantitative meta-analytic comparison of the two groups. FINDINGS: Nineteen studies that included 665 MDD patients (392 adults and 273 adolescents) and 546 controls (341 adults and 205 adolescents) were identified in the current study. Adult-specific abnormal amygdala rsFC in MDD patients compared to that in controls was located mainly within the affective network, including increased connectivity with the right hippocampus/parahippocampus and bilateral ventromedial orbitofrontal cortex and decreased connectivity with the bilateral insula and the left caudate. Adolescent MDD patients specifically demonstrated decreased amygdala rsFC within the cognitive control network encompassing the left dorsolateral prefrontal cortex and imbalanced amygdala rsFC within the default mode network, which was manifested as hyperconnectivity in the right precuneus and hypoconnectivity in the right inferior temporal gyrus. Additionally, direct comparison between the two groups showed that adult patients had strengthened amygdala rsFC with the right hippocampus/parahippocampus as well as the right inferior temporal gyrus and weakened amygdala rsFC with the bilateral insula compared to that in adolescent patients. INTERPRETATION: Distinct impairments of amygdala-centered rsFC in adult and adolescent patients were related to different network dysfunctions in MDD. Adult-specific amygdala rsFC dysfunction within the affective network presumably reflects emotional dysregulation in MDD, whereas adolescent-specific amygdala rsFC abnormalities in networks involved in cognitive control might reflect the neural basis of affective cognition deficiency that is characteristic of adolescent MDD. FUND: This study was supported by a grant from the National Natural Science Foundation of China (81671669) and by a Sichuan Provincial Youth Grant (2017JQ0001).


Subject(s)
Amygdala/physiopathology , Connectome , Depressive Disorder, Major/psychology , Rest/psychology , Adolescent , Adult , Brain/pathology , Brain/physiopathology , Case-Control Studies , Female , Humans , Male , Publication Bias , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...