Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Eur Rev Med Pharmacol Sci ; 26(19): 6919-6927, 2022 10.
Article in English | MEDLINE | ID: mdl-36263571

ABSTRACT

OBJECTIVE: Amantadine is known to have a neuroprotective effect in many neurological diseases. This study aims at investigating the neuroprotective effect of amantadine in rats exposed to carbon monoxide (CO) poisoning. MATERIALS AND METHODS: Rats were maintained under standard experimental laboratory conditions and randomized into 4 different groups of 7 each namely control, amantadine only, CO exposure, and amantadine + CO exposure. For immunohistochemical analysis, tissues taken from the prefrontal and hippocampal regions were taken into formalin and kept for at least one day. Afterward, the tissue was followed and blocked for paraffin blocking. N-Methyl D-Aspartate (NMDA) levels in homogenates were studied by the Enzyme-Linked Immunosorbent Assay (ELISA) method. Superoxide dismutase (SOD) and catalase (CAT) activities in the supernatants were studied with commercial kits. Nitric oxide (NO) and Asymmetric Dimethyl Arginine (ADMA) levels were studied by the ELISA method. Enzyme activity values were calculated by dividing the protein values in the supernatants and normalizing them. RESULTS: CAT, SOD, NMDA, ADMA, and NO levels were statistically significantly different between the groups (p < 0.05). According to post-hoc pairwise comparison test results, the values of the control and amantadine groups for CAT, SOD, NMDA, ADMA, and NO parameters were significantly higher than that of CO group. Similarly, values in the control and amantadine groups were considerably higher than values for the amantadine + CO group. NMDA values were significantly lower in group amantadine + CO than in CO group (p: 0.049). CONCLUSIONS: Apoptosis and endothelial damage after CO poisoning is a complex process, and amantadine administration has a limited contribution in preventing this process.


Subject(s)
Carbon Monoxide Poisoning , Neuroprotective Agents , Animals , Rats , Amantadine/pharmacology , Amantadine/therapeutic use , Antioxidants , Arginine , Carbon Monoxide , Carbon Monoxide Poisoning/drug therapy , Carbon Monoxide Poisoning/metabolism , Catalase/metabolism , D-Aspartic Acid , Formaldehyde , N-Methylaspartate/pharmacology , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Nitric Oxide/metabolism , Paraffin , Receptors, N-Methyl-D-Aspartate , Superoxide Dismutase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...